• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, July 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Deeper defense against cyber attacks

Bioengineer by Bioengineer
November 23, 2021
in Biology
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

To address the growing threat of cyberattacks on industrial control systems, a KAUST team including Fouzi Harrou, Wu Wang and led by Ying Sun has developed an improved method for detecting malicious intrusions.

Deeper defense against cyber attacks

Credit: © 2021 KAUST; Heno Hwang

To address the growing threat of cyberattacks on industrial control systems, a KAUST team including Fouzi Harrou, Wu Wang and led by Ying Sun has developed an improved method for detecting malicious intrusions.

Internet-based industrial control systems are widely used to monitor and operate factories and critical infrastructure. In the past, these systems relied on expensive dedicated networks; however, moving them online has made them cheaper and easier to access. But it has also made them more vulnerable to attack, a danger that is growing alongside the increasing adoption of internet of things (IoT) technology.

Conventional security solutions such as firewalls and antivirus software are not appropriate for protecting industrial control systems because of their distinct specifications. Their sheer complexity also makes it hard for even the best algorithms to pick out abnormal occurrences that might spell invasion.

For instance, system behavior that looks suspicious, such as a freak power surge or the serial failure of circuit breakers, may have natural causes. To add to this, sophisticated cyber attackers may be very good at disguising their movements.

Where algorithms have failed in the past, a branch of machine learning, called deep learning, has proven much more adept at recognizing complex patterns of the kind described above.

Deep learning runs on circuits called neural networks and is trained rather than programed. Instead of writing coded instructions, its creators show the deep learning model different examples to learn from, allowing it to improve in accuracy with every step.

Ying Sun’s team trained and tested five different deep learning models with data supplied by the Mississippi State University’s Critical Infrastructure Protection Center. These were publicly available simulations of different kinds of attack, such as packet injection and distributed denial of service (DDOS), on power systems and gas pipelines.

The deep learning models’ ability to detect intrusions was compared to state-of-the-art algorithms. While the best algorithms were typically between 80 and 90 percent accurate, each deep learning model scored between 97 and 99 percent.

Crucially, when all five deep learning models were “stacked,” the accuracy went up to well over 99 percent. Simply put, stacking means adding the results of all five models and taking their average. “We tried stacking two models, then three and four, until five gave us the accuracy we wanted,” says Harrou.

The team’s stacked deep learning method promises an effective defense in cyberwarfare, which national governments today identify as a major security threat. Cyberattacks such as that on Ukraine’s electricity grid in 2015, which led to outages in thousands of homes, may be prevented. 



Journal

Cluster Computing

DOI

10.1007/s10586-021-03426-w

Method of Research

Computational simulation/modeling

Article Title

A stacked deep learning approach to cyber-attacks detection in industrial systems: application to power system and gas pipeline systems

Article Publication Date

5-Oct-2021

Share12Tweet8Share2ShareShareShare2

Related Posts

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 20, 2025
blank

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 17, 2025

Mobile Gene Regulator Balances Arabidopsis Shoot-Root Growth

July 16, 2025

Mobile Transcription Factor Drives Nitrogen Deficiency Response

July 16, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    57 shares
    Share 23 Tweet 14
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    73 shares
    Share 29 Tweet 18
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.