• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Deep machine-learning speeds assessment of fruit fly heart aging and disease, a model for human disease

by
July 3, 2024
in Health
Reading Time: 3 mins read
0
Girish Melkani, Ph.D.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

BIRMINGHAM, Ala. – Drosophila — commonly known as fruit flies — are a valuable model for human heart pathophysiology, including cardiac aging and cardiomyopathy. However, a choke point in evaluating fruit fly hearts is the need for human intervention to measure the heart at moments of its largest expansion or its greatest contraction, measurements that allow calculations of cardiac dynamics.

Girish Melkani, Ph.D.

Credit: UAB

BIRMINGHAM, Ala. – Drosophila — commonly known as fruit flies — are a valuable model for human heart pathophysiology, including cardiac aging and cardiomyopathy. However, a choke point in evaluating fruit fly hearts is the need for human intervention to measure the heart at moments of its largest expansion or its greatest contraction, measurements that allow calculations of cardiac dynamics.

Researchers at the University of Alabama at Birmingham now show a way to significantly cut the time needed for that analysis while utilizing more of the heart region, using deep learning and high-speed video microscopy for each heartbeat in the fly.

“Our machine learning method is not just fast; it minimizes human error because you don’t have to manually mark each heart wall under systolic and diastolic conditions,” said Girish Melkani, Ph.D., associate professor in the UAB Department of Pathology, Division of Molecular and Cellular Pathology. “Furthermore, you can run the analyses of several hundred hearts and look at the analyses when done for all the hearts.”

This can expand the ability to test how different environmental or genetic factors affect heart aging or pathology. Melkani envisions using deep learning-assisted studies to explore cardiac mutation models and other small animal models, such as zebrafish and mice. “Additionally, our techniques could be adapted for human heart models, providing valuable insights into cardiac health and disease. Incorporating uncertainty quantification methods could further enhance the reliability of our analyses. Moreover, the machine learning approach can predict cardiac aging with high accuracy.” 

The fruit fly model has already been tremendously powerful for understanding the pathophysiological bases for several human cardiovascular diseases, Melkani says. Cardiovascular disease continues to be one of the leading causes of death and disability in the United States.

Melkani and UAB colleagues assessed their trained model on heart performance both in fruit fly cardiac aging and in a fruit fly model of dilated cardiomyopathy caused by the knockdown of a pivotal TCA cycle enzyme, oxoglutarate dehydrogenase. These automated assessments were then validated against existing experimental datasets. For example, for aging of fruit flies at one week versus five weeks of age, which is about halfway through a fruit fly’s life span, the UAB team used 54 hearts for model training and then validated their measurements against an experimental aging model with 177 hearts. Their trained model was able to reconstruct expected trends in cardiac parameters with aging.

Melkani says his team’s model can be applied to readily available consumer hardware, and his team’s code can provide calculated statistics including diastolic and systolic diameters/intervals, fractional shortening, ejection fraction, heart period/rate, and quantified heartbeat arrhythmicity.

“To our knowledge, this innovative platform for deep learning-assisted segmentation is the first of its kind to be applied to standard high-resolution high-speed optical microscopy of Drosophila hearts while also quantifying all relevant parameters,” Melkani said.

“By automating the process and providing detailed cardiac statistics, we pave the way for more accurate, efficient and comprehensive studies of heart function in Drosophila. This method holds tremendous potential — not only for understanding aging and disease in fruit flies — but also for translating these insights into human cardiovascular research.”

First authors of the study, “Automated assessment of cardiac dynamics in aging and dilated cardiomyopathy Drosophila models using machine learning,” published in the journal Communications Biology, are Yash Melkani and Aniket Pant, UAB Department of Pathology. Yiming Guo, UAB Pathology, is also an author, and Girish Melkani is the corresponding author.

Support came from National Institutes of Health grant AG065992, a UAB Marnix E. Heersink School of Medicine AMC21 grant and UAB Pathology startup funds.

In his research, Girish Melkani develops and uses clinically relevant Drosophila models to address the pathophysiological basis of human circadian/metabolic disorders linked to cardiometabolic disease, myofibrillar-myopathies, proteinopathies, neuropathies, and sleep and aging disruptions. He also investigates how lifestyle and genetic factors act to maintain the structural integrity of cells, tissues and organs, which in turn dictates organismal physiology.



Journal

Communications Biology

DOI

10.1038/s42003-024-06371-7

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Automated assessment of cardiac dynamics in aging and dilated cardiomyopathy Drosophila models using machine learning

Article Publication Date

7-Jun-2024

COI Statement

None

Share12Tweet8Share2ShareShareShare2

Related Posts

ABCA7 Variants Alter Neuronal Mitochondria, Phosphatidylcholine

September 11, 2025

Redox Minerals and Organics in Jezero Crater

September 11, 2025

How Virtuousness Boosts Nurses’ Commitment Through Just Culture

September 11, 2025

How Your Genes May Shape Gut Microbes to Shield You from Disease

September 11, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

ABCA7 Variants Alter Neuronal Mitochondria, Phosphatidylcholine

Dual-Mode X-ray and NIR Imaging with Bifunctional Scintillators

Turning Noise into Power: Unveiling the Symmetric Ratchet Motor Breakthrough

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.