• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Deep-diving technology finds little filter feeder has giant carbon cycling impact

Bioengineer by Bioengineer
May 3, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
Loading video…

Credit: © 2017 MBARI

Deep-diving Technology Finds Little Filter Feeder Has Giant Carbon Cycling Impact: Using a novel deep-sea technology, scientists have measured for the first time how a species of zooplankton called giant larvaceans contributes to the transfer of atmospheric carbon to the deep ocean. Data from the instrument DeepPIV revealed that giant larvaceans filter carbon particles at higher rates than any other zooplankton filter feeder. The technology may also be used for more accurate measurements of carbon removal by other deep-water organisms, an essential parameter for modeling oceanic ecosystems. Giant larvaceans, which are approximately pinky finger-sized plankton, live in the upper 400 meters of the ocean and build filtering "houses" so fragile that they cannot be analyzed in a lab. As giant larvaceans beat their tails, they propel particles from the water into these mucus houses for digestion. What's more, when the larvaceans discard their old, nutrient-rich houses, these structures sink to the sea floor, a significant contribution to moving organic materials into deeper water. Until now, scientists have only been able to estimate giant larvacean filtration rates based off the rates of other zooplankton. To measure their contribution more directly, Kakani Katija and colleagues launched DeepPIV, which deployed from a remotely operated vehicle and visualized fluid motion, in Monterey Bay, California. Katija et al. observed giant larvaceans and other zooplankton in the genus Bathochordaeus and collected 24 flow measurements. They found that one blue-tailed species of giant larvaceans had a filtration rate higher than the previously reported record-holding plankton, salps. By combining filtration rates with data on larvacean abundance, Katija et al. calculated the zooplankton could filter their 200 meter principal depth range in Monterey Bay in 13 days. As a next step, the scientists hope to compare the filtering rates at this site to areas around the world that are home to giant larvaceans.

###

Media Contact

Kim Fulton-Bennett
[email protected]
831-775-1835
@AAAS

http://www.aaas.org

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Hemoglobin Glycation Index Predicts Diabetes Risk

November 5, 2025

Evaluating Cognitive Workload: A Safety Management Review

November 4, 2025

Risk Assessment Models Reduce Venous Thromboembolism Prophylaxis

November 4, 2025

Unveiling Wheat’s Defense Against WSMV: A Transcriptomic Study

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Hemoglobin Glycation Index Predicts Diabetes Risk

Evaluating Cognitive Workload: A Safety Management Review

Risk Assessment Models Reduce Venous Thromboembolism Prophylaxis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.