• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Decoding the genome’s cryptic language

Bioengineer by Bioengineer
February 24, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Victor O. Leshyk

Bioengineers at the University of California San Diego have developed a new tool to identify interactions between RNA and DNA molecules. The tool, called MARGI (Mapping RNA Genome Interactions), is the first technology that's capable of providing a full account of all the RNA molecules that interact with a segment of DNA, as well as the locations of all these interactions — in just a single experiment.

RNA molecules can attach to particular DNA sequences to help control how much protein these particular genes produce within a given time, and within a given cell. And by knowing what genes produce these regulatory RNAs, researchers can start to identify new functions and instructions encoded in the genome.

"Most of the human genome sequence is now known, but we still don't know what most of these sequences mean," said Sheng Zhong, bioengineering professor at the UC San Diego Jacobs School of Engineering and the study's lead author. "To better understand the functions of the genome, it would be useful to have the entire catalog of all the RNA molecules that interact with DNA, and what sequences they interact with. We've developed a tool that can give us that information."

Zhong and his team published their findings in the Feb. issue of Current Biology.

Existing methods to study RNA-DNA interactions are only capable of analyzing one RNA molecule at a time, making it impossible to analyze an entire set of RNA-DNA interactions involving hundreds of RNA molecules.

"It could take years to analyze all these interactions," said Tri Nguyen, a bioengineering Ph.D. student at UC San Diego and a co-first author of the study.

Using MARGI, an entire set of RNA-DNA interactions could be analyzed in a single experiment that takes one to two weeks.

The MARGI technique starts out with a mixture containing DNA that's been cut into short pieces and RNA. In this mixture, a subset of RNA molecules are interacting with particular DNA pieces. A specially designed linker is then added to connect the interacting RNA-DNA pairs. Linked RNA-DNA pairs are selectively fished out, then converted into chimeric sequences that can all be read at once using high-throughput sequencing.

Zhong and his team tested the method's accuracy by seeing if it produced false positive results. First, the researchers mixed RNA and DNA from both fruit fly and human cells, creating both "true" RNA-DNA pairs, meaning they're either fully human or fully fruit fly, and "false" RNA-DNA pairs, meaning they're half human and half fruit fly — these are the ones that shouldn't be detected. The team then screened the entire mixture using MARGI. The method detected a large set of true RNA-DNA interactions, but it also detected approximately 2 percent of the false ones.

"This method is not perfect, but it's an important step toward creating a full functional annotation of the genome," said co-first author Bharat Sridhar, a visiting bioengineering researcher in Zhong's group.

###

Full paper: "Systematic mapping of RNA-chromatin interactions in vivo." Authors of the study are Bharat Sridhar*, Marcelo Rivas-Astroza*, Tri C. Nguyen*, Weizhong Chen, Zhangming Yan, Xiaoyi Cao, Lucie Hebert and Sheng Zhong.

*These authors contributed equally to this work

This work is supported by the National Institutes of Health (grant DP1HD087990).

Media Contact

Liezel Labios
[email protected]
858-246-1124
@UCSanDiego

http://www.ucsd.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Korean Researchers Develop Self-Stacking Lithium Electrode to Prevent EV Battery Explosions

Korean Researchers Develop Self-Stacking Lithium Electrode to Prevent EV Battery Explosions

October 31, 2025
Bayesian Sequential Palpation Enhances Bimodal Tactile Tomography for Intracavitary Microstructure Profiling and Segmentation

Bayesian Sequential Palpation Enhances Bimodal Tactile Tomography for Intracavitary Microstructure Profiling and Segmentation

October 31, 2025

Machine Learning Enhances Vocational Training Impact Prediction

October 31, 2025

Early Body Composition in Very Preterm Infants Fed High-Volume Human Milk

October 31, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1293 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Korean Researchers Develop Self-Stacking Lithium Electrode to Prevent EV Battery Explosions

Bayesian Sequential Palpation Enhances Bimodal Tactile Tomography for Intracavitary Microstructure Profiling and Segmentation

Machine Learning Enhances Vocational Training Impact Prediction

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.