• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Decoding flavonoid metabolism: a closer look at plant-based diets

Bioengineer by Bioengineer
December 4, 2023
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In a world where plant-based lifestyles are on the rise, the power of foods such as broccoli, celery, and tofu, which are rich in flavonoids, is becoming clearer. Flavonoids are phenolic compounds produced by plants that are essential for plant development and defense and have long been said to have therapeutic and preventive effects against cancer and heart disease. However, the exact process of how our bodies metabolize flavonoids remains unclear.

Understanding how our bodies metabolize different flavonoids in our diets

Credit: Osaka Metropolitan University

In a world where plant-based lifestyles are on the rise, the power of foods such as broccoli, celery, and tofu, which are rich in flavonoids, is becoming clearer. Flavonoids are phenolic compounds produced by plants that are essential for plant development and defense and have long been said to have therapeutic and preventive effects against cancer and heart disease. However, the exact process of how our bodies metabolize flavonoids remains unclear.

An international team of researchers led by visiting researcher Tsutomu Shimada and Professor Shigeo Takenaka of the Graduate School of Human Life and Ecology at Osaka Metropolitan University, has shed light on the mechanism of three major flavonoids – naringenin, apigenin and genistein – and the processes by which the body metabolizes them. Molecular docking analyses revealed that human enzymes modify flavonoids in a similar way to how plants modify flavonoids.

“The results of this research are fundamental in elucidating the correlation between the metabolism of flavonoids in the body and their potential health benefits,” explained Professor Takenaka.

Their findings were published in Chemical Research in Toxicology.

 

Other researchers on the paper are from: Osaka Institute of Public Health, Showa Pharmaceutical University, Konkuk University and Vanderbilt University.

 

###

About OMU 

Osaka Metropolitan University is the third largest public university in Japan, formed by a merger between Osaka City University and Osaka Prefecture University in 2022. OMU upholds “Convergence of Knowledge” through 11 undergraduate schools, a college, and 15 graduate schools. For more research news, visit https://www.omu.ac.jp/en/ or follow us on Twitter: @OsakaMetUniv_en, or Facebook. 

 



Journal

Chemical Research in Toxicology

DOI

10.1021/acs.chemrestox.3c00229

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Oxidation of Naringenin, Apigenin, and Genistein by Human Family 1 Cytochrome P450 Enzymes and Comparison of Interaction of Apigenin with Human P450 1B1.1 and Scutellaria P450 82D.1

Article Publication Date

2-Oct-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Blocking Programmed Cell Death: A New Approach to Treating Rare Childhood Diseases

Blocking Programmed Cell Death: A New Approach to Treating Rare Childhood Diseases

August 22, 2025
blank

G9a-Driven H3K9me2 Modification Safeguards Centromere Integrity

August 22, 2025

Redefining Healthy Longevity: How Science, Technology, and Investment Are Shaping the Future

August 22, 2025

Zoo Populations Crucial for Saving the Pacific Pocket Mouse

August 22, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Microhaplotype Panel Advances Brazilian Human Identification

Federated Learning Enhances Data Privacy in Battery SOH Prediction

Yogurt Consumption and Hot Spring Bathing: A Promising Duo for Enhancing Gut Health

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.