• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Decoding cellular ‘shape-shifters’

Bioengineer by Bioengineer
April 29, 2024
in Biology
Reading Time: 4 mins read
0
Sharon Torigoe, assistant professor of biology at Lewis & Clark College
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

As embryos, all complex organisms are partially made up of pluripotent stem cells, a term for cells that have the capacity to differentiate into any kind of cell: nerve cells, muscle cells, blood cells, skin cells, and the like. As the ultimate biological “shape-shifters,” these cells are proving key to regenerative medicine, drug development, genetic research, and related fields.

Sharon Torigoe, assistant professor of biology at Lewis & Clark College

Credit: Lewis & Clark College

As embryos, all complex organisms are partially made up of pluripotent stem cells, a term for cells that have the capacity to differentiate into any kind of cell: nerve cells, muscle cells, blood cells, skin cells, and the like. As the ultimate biological “shape-shifters,” these cells are proving key to regenerative medicine, drug development, genetic research, and related fields.

Within a pluripotent stem cell, certain genes get activated and express information that ultimately decides a cell’s fate. The first step in this expression process is called transcription, a process that turns out to be incredibly complex, in part because each cell contains thousands of genes and only a portion are utilized at any given time.

And, it should be complex, according to Sharon Torigoe, assistant professor of biology, and a molecular biologist, who studies how transcription is controlled

“It shouldn’t be easy to derail any of these processes, right?” says Professor Torigoe. “They’ve been perfecting themselves over the millennia to have the most selectively advantageous system.”

Torigoe is investigating a small part of these complicated systems. Her work was recently recognized by the National Science Foundation (NSF) with a three-year Research in Undergraduate Institutions (RUI) grant. The grant is from NSF’s Molecular and Cellular Biosciences (MCB) program’s Genetic Mechanisms Cluster, which funds inventive ideas and research to address fundamental questions about genetics, epigenetics, and gene expression mechanisms. Torigoe’s grant will support work she leads with Lewis & Clark College undergraduate students to unlock the mechanisms behind what determines a pluripotent cell’s fate. A better understanding of these mechanisms is key to unlocking the potential of regenerative medicine.

Throughout the three-year grant period, the NSF funding will support at least seven students participating in full-time summer research experiences through the Rogers Science Research Program, a signature summer research program at Lewis & Clark College.

Taking it gene by gene

Torigoe is specifically focused on understanding enhancers. Enhancers are genomic sequences that serve as binding sites for proteins that control transcription. These sequences exist some distance away from the part of the genome where transcription takes place. But enhancers are important because they increase the likelihood that transcription of a certain gene will occur.

While some scientists learn about the rules of gene expression by studying thousands of genes simultaneously through machine learning, Torigoe’s approach is to examine one or two individual genes at a time.

“There could be a number of rules involved in what makes an enhancer function the way it does,” says Torigoe. “This diversity among enhancers is what makes it exciting. The diversity also makes it very daunting.”

Torigoe and her students use the embryonic stem cells of mice to investigate Klf4, an enhancer that is crucial for maintaining a cell’s pluripotency. Enhancer grammar, or its characteristics, are thought to be key to its function.    

Scientists studying enhancers refer to their characteristics as grammar because, according to Torigoe, an enhancer’s protein binding sites could be likened to individual words. A series of binding sites are like a sentence built on multiple words that, when strung together, create meaning.

One thing Torigoe is looking for is what characteristics lead a protein to have affinity for a particular enhancer sequence.

“For example, can the protein ‘read’ the binding site as correct, even if there are ‘typos?’” she asks. “And then there’s syntax, or the order the words are in. If the subject and object are reversed, or the verb is in a different place, that can change the meaning of the sentence and, therefore, the function of the enhancer.”

Torigoe says her students sometimes find the complicated nature of investigating enhancer grammar frustrating because there is usually not a simple answer or explanation to their questions.

“Different parts of enhancer grammar interact, making it a challenge to study,” she says. “When we think we have answered one question, we realize there are 10 new questions.”

Still, Torigoe hopes to make headway on unlocking the mechanisms that govern the functioning of enhancer genes, like Klf4, and then apply that knowledge to other genes.

“I have to go after one gene,” she says. “And then after that one, maybe I can go after some more genes. And then we might discover that this one rule applies to 10 other genes. Then, there may be another 2,000 genes that do something else, so then we can investigate those.”

She adds: “In the end, enhancer grammar is probably going to be complicated because biology is ultimately very complicated.



Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Unveiling Sex-Switching in Silver Pomfret Juveniles

October 20, 2025
blank

Continuous Electrocardiogram-Based Sex Index Unveiled

October 19, 2025

Early Gonadectomy Impacts Lifelong Frailty in Dogs

October 19, 2025

Sex Differences in Energy Demand in Alzheimer’s Model

October 19, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1264 shares
    Share 505 Tweet 316
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    296 shares
    Share 118 Tweet 74
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    126 shares
    Share 50 Tweet 32
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of GMAW and SMAW on E350 Steel Properties

Unveiling Sex-Switching in Silver Pomfret Juveniles

Exploring Motor Differences in Neurodivergence: Initial Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.