• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Deciphering the walnut genome

Bioengineer by Bioengineer
March 26, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Findings could lead to new walnut varieties

IMAGE

Credit: UC Davis

California produces 99 percent of the walnuts grown in the United States. New research could provide a major boost to the state’s growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California’s 4,800 growers.

In a new study, a team of scientists at the University of California, Davis, and USDA’s Agricultural Research Service (ARS) used a unique approach to sequence the genomes of the English walnut and its wild North American relative by tapping into the capabilities of two state-of-the-art technologies: long-read DNA sequencing and optical genome mapping. The resulting genome sequences are believed to be of the highest quality ever assembled of any woody perennial.

“By sequencing the genome of a walnut hybrid, we produced complete genome sequences for both parents in the time normally required to produce the sequence of one genome,” said Ming-Cheng Luo, leading genomics investigator on the project and a research geneticist in the Department of Plant Sciences at UC Davis.

This approach could be applied to genome sequencing of trees and many other woody perennials, opening the door to a better understanding of the genetic blueprints of almonds, pecans, pistachios and grapes.

“Like walnut, these other crops naturally cross-pollinate and are therefore highly variable,” said Jan Dvorak, co-principal investigator and genetics professor at the Department of Plant Sciences at UC Davis. “Variability has always greatly complicated our ability to produce a high-quality genome sequence for such crops, but these new technologies now make it possible,” Dvorak added.

In California, walnuts are grown commercially using rootstocks chosen specifically for their ability to tolerate various soil-borne diseases.

“We chose to cross the widely used English walnut specifically with the wild Texas black walnut because of its native resistance to several soil-borne diseases and root nematodes, which are serious pests of walnut in California,” said Dan Kluepfel, a USDA-ARS scientist and principal investigator of the walnut-rootstock development project.

The assembled genome sequences of the two walnut species also will now help researchers identify genetic markers that breeders can use to develop new varieties with improved pathogen and pest resistance.

###

Major contributors to the project included UC Davis scientists Tingting Zhu, Le Wang, and Agriculture and Agri-Food Canada scientist Frank You.

The study was published online Monday (March 25) in Horticulture Research. The research was funded by the California Walnut Board and the USDA’s National Institute of Food and Agriculture Specialty Crop Research Initiative.

Media Contact
Amy Quinton
[email protected]

Original Source

http://www.ars.usda.gov/news-events/news/research-news/2019/deciphering-the-walnut-genome/?utm_medium=email&utm_source=govdelivery

Related Journal Article

http://dx.doi.org/10.1038/s41438-019-0139-1

Tags: AgricultureFood/Food ScienceGeneticsPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Decoding Animal Decision-Making: NIH Funds Groundbreaking Research on Exploration vs. Exploitation

Decoding Animal Decision-Making: NIH Funds Groundbreaking Research on Exploration vs. Exploitation

September 9, 2025
Nitrogen Supplementation: Impact on Cattle Nutrition and Metabolism

Nitrogen Supplementation: Impact on Cattle Nutrition and Metabolism

September 9, 2025

Taenia Pisiformis Infection Alters Pregnant Rabbits’ Immune Response

September 9, 2025

Tracing the Origins of Wnt Signaling Uncovers a Protein Superfamily Spanning the Tree of Life

September 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    51 shares
    Share 20 Tweet 13
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

RSV Can Severely Impact Even Healthy Children, New Research Shows

Keto Diet May Alleviate Depression Symptoms Among College Students, Study Finds

Lactobacillus crispatus Linked to Healthy Pregnancy Outcomes

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.