• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Decades old debate settled: Golgi key to maintenance of molecule-sorting station in cells

Bioengineer by Bioengineer
December 2, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New mechanism to explain how the cell organelle that sorts and distributes substances entering a cell is formed and maintained

IMAGE

Credit: Professor Jiro Toshima from the Tokyo University of Science

On a daily basis, multitudes of molecules enter each cell in our body. These can be nutrients or signal molecules or pathogenic microorganisms. An organelle in the cell directs these molecules to other stations for further processing. This organelle is called the endosome. If the pathways by which this sorting occurs fails at any stage, several diseases such as neurodegenerative diseases and certain cancers can occur. Thus, a better understanding of the steps in these pathways is of utmost importance.

In a recent study published in Communications Biology, a group of scientists from Japan and Austria, led by Prof Jiro Toshima from the Tokyo University of Science, reports a new finding regarding the maintenance and functioning of the endosome.

Conventional knowledge is that two processes are necessary for the upkeep of endosomes: a) sacs of molecules constantly form at the cell membrane, are transported to the endosome, and fuse into it; b) protein-containing vesicles transported from the Golgi (another cell organelle) fuse with the endosome.

The researchers of this study claim that this is not the case.

They introduce genetic mutations and drugs into yeast cells to inhibit each of these transport processes at a time. When transport from the Golgi does not occur, a protein essential to the upkeep of the endosome, Rab5, is not activated, and endosome formation is affected. When cell transport from the membrane is inhibited, there is no effect on the endosome. Thus, essentially, transport from the Golgi is necessary and that from the cell membrane is dispensable, or not as crucial. “Our results provide a different view of endosome formation and identify the Golgi as critical for the optimal maintenance and functioning of endosomes,” Prof Toshima says.
This study clarifies only a fraction of the molecule-sorting pathway in cells. But, this is certainly one giant step in the research in this field. Perhaps, the insights from this study will soon appear on the pages of cell biology textbooks.

###

About the Tokyo University of Science

Tokyo University of Science (TUS) is a well-known and respected university, and the largest science-specialized private research university in Japan, with four campuses in central Tokyo and its suburbs and in Hokkaido. Established in 1881, the university has continually contributed to Japan’s development in science through inculcating the love for science in researchers, technicians, and educators.

With a mission of “Creating science and technology for the harmonious development of nature, human beings, and society”, TUS has undertaken a wide range of research from basic to applied science. TUS has embraced a multidisciplinary approach to research and undertaken intensive study in some of today’s most vital fields. TUS is a meritocracy where the best in science is recognized and nurtured. It is the only private university in Japan that has produced a Nobel Prize winner and the only private university in Asia to produce Nobel Prize winners within the natural sciences field.

Website: https://www.tus.ac.jp/en/mediarelations/

About Professor Jiro Toshima from the Tokyo University of Science

Dr Jiro Toshima is at present a Professor with the Department of Biological Science and Technology at the Tokyo University of Science, Japan. Having begun research in cell biology and related fields in 1999, he has co-authored over 41 publications, and is the lead author of the present paper. From September 2017 to August 2019, he served as a Councillor in the Japanese Biochemical Society.

Funding information

This research was supported by grants to Junko Y. Toshima (JSPS KAKENHI Grant #26440067, the Takeda Science Foundation, the Novartis Foundation, Japan) and to Jiro Toshima (JSPS KAKENHI Grant #19K06571, the Life Science Foundation of Japan, the Uehara Memorial Foundation and the Takeda Science Foundation).

Media Contact
Tsutomu Shimizu
[email protected]

Original Source

https://www.tus.ac.jp/en/mediarelations/archive/20191115001.html

Related Journal Article

http://dx.doi.org/10.1038/s42003-019-0670-5

Tags: BiologycancerCell BiologyDevelopmental/Reproductive BiologyGeneticsHealth CareMicrobiologyMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Hope for Sahara Killifish’s Rediscovery in Algeria!

Hope for Sahara Killifish’s Rediscovery in Algeria!

September 12, 2025
Dihuang Yinzi Boosts Cognition, Fights Ferroptosis in Mice

Dihuang Yinzi Boosts Cognition, Fights Ferroptosis in Mice

September 12, 2025

Non-GMO Yeast Boosts Glutathione via Acrolein Resistance

September 12, 2025

Microemulsions Enhance Resistance in Mycoplasma gallisepticum

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Lung Function in Cystic Fibrosis: MRI Methods

Hope for Sahara Killifish’s Rediscovery in Algeria!

Dopamine D2 Receptors and Heart Cell Death Unveiled

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.