• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Decades-old crustaceans coaxed from lake mud give up genetic secrets revealing evolution in action

Bioengineer by Bioengineer
February 2, 2023
in Biology
Reading Time: 3 mins read
0
Daphnia pulicaria
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Human actions are changing the environment at an unprecedented rate. Plant and animal populations must try to keep up with these human-accelerated changes, often by trying to rapidly evolve tolerance to changing conditions.

Daphnia pulicaria

Credit: Dagmar Frisch

Human actions are changing the environment at an unprecedented rate. Plant and animal populations must try to keep up with these human-accelerated changes, often by trying to rapidly evolve tolerance to changing conditions.

University of Oklahoma researchers Lawrence Weider, professor of biology, and Matthew Wersebe, a biology doctoral candidate, demonstrated rapid evolution in action by sequencing the genomes of a population of Daphnia pulicaria, an aquatic crustacean, from a polluted lake.  

The research, which was conducted as part of Wersebe’s doctoral dissertation, was recently published in the Proceedings of the National Academy of Sciences.  Wersebe and Weider revived decades-old Daphnia resting eggs from lake sediments, a method known as resurrection ecology, which has been refined in Weider’s lab over the past several decades. They then sequenced the entire genomes of 54 different Daphnia individuals from different points-in-time, allowing them to study the genetics and evolution of the population.

The Daphnia were collected from Tanners Lake, located in Oakdale, Minnesota. Tanners Lake has suffered significant salt pollution, stemming from the widespread use of road deicing salts in its watershed.  

Daphnia, also known as water fleas, play critical roles in environmental monitoring. For example, they have served as important test organisms in laboratories around the world for over a century because of their sensitivity to many environmental stressors such as chemicals. In nature, Daphnia act as a keystone species in freshwater food webs globally, where they feed on algae to help keep lake and reservoir water clean and serve as a food item for recreational and commercially important fish species.

Wersebe’s and Weider’s results indicate that rapid adaptation to salt pollution may allow lake Daphnia to persist in the face of anthropogenic salinization, maintaining the food webs and ecosystem services that Daphnia support. However, the ability of these populations to adapt will depend on the speed at which these changes are occurring and the underlying genetic makeup of the impacted populations. 

Over the past several years, many researchers have published results defining the scope and scale of lake salinization and recent research has highlighted the ecological impacts. However, to date, the evolutionary implications are not well known. Through their study, Wersebe and Weider reported signatures of natural selection throughout the genome near genes related to osmoregulation and ion regulation, key processes for dealing with high salt. Characterizing clones for salinity tolerance revealed evidence that genetic changes may underlie rapid evolution.  

“Work like this is the first step in designing future studies incorporating recent technological advances, such as CRISPR gene editing, allowing the creation of comprehensive genotype-to-phenotype maps and predicting the role that genetic variation plays in creating diverse forms and functions,” Wersebe said. “In fact, we found a promising gene that appears not to work properly in the older Daphnia, but a functional copy of the gene is increasing in frequency – true evolution in action.”

Future research using these advanced technologies for cutting and pasting the non-functional gene into Daphnia would be one way to better probe the effects that mutations have on complex phenotypic traits like salinity tolerance.  

The work was funded by the OU Department of Biology Adams Summer Scholarship, Robberson OU Graduate College Grant, Hill Fund for Research in Biology, OU Graduate Student Senate Research Grant, American Museum of Natural History Theodore Roosevelt Grant and the National Science Foundation Biogeography of Behavior student seed grant awarded to Wersebe in support of graduate research. The study was facilitated by material and technical assistance from the University of Oklahoma Biological Station in Kingston, Oklahoma, and the St. Croix Watershed Research Station in Marine-on-St. Croix, Minnesota.  

For more information, contact Wersebe at [email protected].



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.2217276120

Subject of Research

Not applicable

Article Title

Resurrection genomics provides molecular and phenotypic evidence of rapid adaptation to salinization in a keystone aquatic species

Article Publication Date

2-Feb-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Leaf Beetle Evolution Boosts Defense Against Shared Wasp

Leaf Beetle Evolution Boosts Defense Against Shared Wasp

September 8, 2025
Evaluating Impact of Environment on Kenyan Donkey Welfare

Evaluating Impact of Environment on Kenyan Donkey Welfare

September 8, 2025

Mountain Frogs’ Niche Adaptation to Climate Change

September 8, 2025

Neon Signals: Flashlight Fish Communicate in Darkness

September 7, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Leaf Beetle Evolution Boosts Defense Against Shared Wasp

Evaluating Impact of Environment on Kenyan Donkey Welfare

Protecting Youth from the Risks of Sports Betting Advertising in Canada

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.