• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Data identifies turbine wake clustering, improves wind farm productivity via yaw control

Bioengineer by Bioengineer
July 20, 2021
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Truly green energy by seeing the forest despite the trees

IMAGE

Credit: University of Texas at Dallas

WASHINGTON, July 20, 2021 — In the wind power industry, optimization of yaw, the alignment of a wind turbine’s angle relative to the horizonal plane, has long shown promise for mitigating wake effects that cause a downstream turbine to produce less power than its upstream partner. However, a critical missing puzzle piece in the application of this knowledge has recently been added — how to automate the identification of which turbines are experiencing wake effects amid changing wind conditions.

In the Journal of Renewable and Sustainable Energy, by AIP Publishing, researchers from the University of Texas at Dallas describe a real-time method for potentially helping turbine farms realize additional power from the clustering of their turbines. Their method requires no new sensors to identify which turbines at any given time could increase power production if yaw control is applied, and validation studies showed an increase of 1%-3% in overall power gain.

“There was a huge gap in how to determine, automatically, which turbine is in the wake of another in the field with variable wind conditions,” said co-author Stefano Leonardi. “This is what we solved. This is our contribution.”

Wind farms consist of multiple turbines built close together, each converting kinetic energy into electricity. Optimizing power production from an individual turbine depends on many factors (e.g., stratification, temperature, turbulence, topography, etc.), but optimizing production of the farm as a whole also involves interactions between turbines. A downstream turbine in the wake of another encounters decreased wind, reducing turbine power production up to 60%.

The researchers identified how to create clusters or links between turbines by identifying correlations in data currently collected by turbine sensors. Wind farm owners can then use this automated information to guide employment of a standard procedure for yaw control, based on the past decade of studies about yaw optimization. Each 1% increase in energy production would represent 3 billion kilowatts per year.

“The exciting part about our work is that it matches reality, impacting real people,” said co-author Federico Bernardoni. “Operators can use these results to identify when they should apply yaw control, and to which group, to maximize wind power gain.”

Since the turbines already have the hardware and sensors, and the land is already committed to the wind farm, any increase in power production using this method would be truly green energy. The method is also unique because it is model-free. It makes no assumptions about current parameters or conditions, minimizing the effects of uncertainty present in current wake models.

“By just making turbines smarter, we’re getting more energy from something that already exists,” said Leonardi. “Using just simple math, we’re increasing energy, so that’s a very clean, green 1[%]-3%.”

###

The article “Identification of wind turbine clusters for effective real time yaw control optimization” is authored by Stefano Leonardi, Federico Bernardoni, Umberto Ciri, and Mario Rote. The article will appear in Journal of Renewable and Sustainable Energy on July 20, 2021 (DOI: 10.1063/5.0036640). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/5.0036640.

ABOUT THE JOURNAL

Journal of Renewable and Sustainable Energy is an interdisciplinary journal that publishes across all areas of renewable and sustainable energy relevant to the physical science and engineering communities. Topics covered include solar, wind, biofuels and more, as well as renewable energy integration, energy meteorology and climatology, and renewable resourcing and forecasting. See https://aip.scitation.org/journal/rse.

Media Contact
Larry Frum
[email protected]

Related Journal Article

http://dx.doi.org/10.1063/5.0036640

Tags: Atmospheric ScienceChemistry/Physics/Materials SciencesEarth ScienceEnergy SourcesEnergy/Fuel (non-petroleum)Technology/Engineering/Computer ScienceWeather/Storms
Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

August 1, 2025
Oven-Temperature Treatment (~300℃) Enhances Catalyst Performance by Six Times

Oven-Temperature Treatment (~300℃) Enhances Catalyst Performance by Six Times

August 1, 2025

5 Innovations Securing Water Sources and Ensuring Availability

August 1, 2025

Innovative Imaging Technique Reveals Elemental Distributions in Frozen Solvents within Nanomaterials

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    40 shares
    Share 16 Tweet 10
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Predicting Lung Infections After Brain Hemorrhage

Impact of Morphology and Location on Aneurysms

Unraveling EMT’s Role in Colorectal Cancer Spread

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.