• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Dartmouth lab identifies pulling and braking of ‘ancient motor’ in cell division

Bioengineer by Bioengineer
August 7, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Wei-Lih Lee/Dartmouth College

HANOVER, N.H. – August 7, 2018 – Researchers at Dartmouth College have revealed how a key protein functions during the millions of cell divisions that occur in the human body each minute. The research describes two separate but coordinated pulling actions generated by the protein dynein that ensure healthy cell division in humans and other organisms.

The Dartmouth research demonstrates for the first time that dynein employs both "side-on" and "end-on" forces to carry out its work during mitosis. The study also shows that dynein chooses which mechanism to activate depending on where the protein is located within the cell.

The study, published in the journal eLife, focuses on dynein in baker's yeast, an organism that features cells that function similarly to those in the human body. The research adds to the understanding of the mechanisms involved in cell reproduction and sheds light on a cellular-level mystery that has confounded researchers.

"For close to two decades researchers have strained to understand why dynein appears to behave differently in yeast," said Wei-Lih Lee, a professor of biological sciences at Dartmouth. "The discovery of the protein's dual role answers this question and allows us to learn even more about the regulation of dynein during cell division."

Dynein – referred to as an "ancient motor protein"- is widely known for its role in carrying waste products from nerve terminals back to cell bodies in the spinal cord. The protein is also essential for processes like embryonic development and the steady maintenance of stem cells in the basal layers of the skin.

During cell division, dynein positions the mitotic spindle, a complex apparatus that allows cells to segregate genetic material. Once the spindle is aligned by dynein, DNA is distributed equally and the two daughter cells can survive.

"Positioning the mitotic spindle correctly is absolutely essential in order to have healthy cells, and it's dynein that performs that task," said Safia Omer, a graduate research assistant who was the lead author of the study.

To do its work, dynein uses two distinct pulling mechanisms. The first of these mechanisms, "side-on" pulling, applies lateral force to the mitotic spindle, similar to pulling on the side of a rope. The second mechanism, "end-on" pulling, pulls the spindle from its end, similar to the way a wood chipper draws in a log. This end-on pulling action also applies a brake to the spindle's movement and causes it to set in precisely the correct position.

Until the Dartmouth study, researchers were uncertain as to why dynein seemed to prefer one mechanism over the other depending on which organism it was in.

"We were puzzled as to why the 'end-on' pulling action didn't appear to exist in yeast, but it actually does. It was evading discovery for all of this time because this mechanism only exists for a short time and in a small location in the cell," said Lee.

In addition to discovering this dual-role for dynein, the Dartmouth research demonstrates that the protein only activates "side-on" pulling when it sits on the sides of the cell membrane, and pulls from the end when it sits on the apex of the cell. Also, the study uncovers an unexpected role for the cellular structure known as the endoplasmic reticulum in regulating dynein behavior.

According to the study, the role of dynein is most essential when creating asymmetric daughter cells, with one transforming into a tissue cell and the other remaining as a stem cell. If a mutation causes dynein to position the spindle incorrectly, the daughter cells would feature an abnormal fate leading to maladies like skin cancer or the "smooth brain" disease lissencephaly.

"Basic science such as this is an investment in the future," said Samuel Greenberg, an undergraduate student at Dartmouth who assisted with the research. "Understanding these processes could allow researchers to make candidate drugs to target specific problems in the pathway."

Future research will focus on how dynein switches from one pulling mechanism to the other to control the critical process of cell division.

###

Media Contact

David Hirsch
[email protected]
@dartmouth

http://www.dartmouth.edu

Related Journal Article

http://dx.doi.org/10.7554/eLife.36745

Share12Tweet8Share2ShareShareShare2

Related Posts

Gene Variant Boosts ATXN7L3B Expression In Vivo

Gene Variant Boosts ATXN7L3B Expression In Vivo

November 11, 2025
Disrupting Crazy Ant Nests Increases Their Vulnerability to Pathogens

Disrupting Crazy Ant Nests Increases Their Vulnerability to Pathogens

November 11, 2025

Sexual Dimorphism in Hypothalamic Neurons Affects Metabolism

November 11, 2025

Hearing Loss at Birth Alters Brain Development, Highlighting Critical Need for Early Intervention

November 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1305 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Sex-Specific Models Enhance Abdominal Aortic Aneurysm Predictions

Exergame Training Boosts Physical, Cognitive Health in Seniors

New Computational Method Promises to Compress Decades of Disease Biology Research into Days

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.