• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Danforth Center expands major research program to benefit farmers in the developing world

Bioengineer by Bioengineer
January 25, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Donald Danforth Plant Science Center

ST. LOUIS, MO, January 25, 2017 – The Donald Danforth Plant Science Center, one of the world's largest independent plant science institutes, today announced a three-year $6.1 million grant from the Bill & Melinda Gates Foundation to expand and accelerate the development and deployment of advanced sorghum phenotyping and breeding technologies in support of improved varieties for smallholder farmers.

"The Gates Foundation recognizes that most smallholder farmers rely on small plots of land for food and income. This grant will help increase the productivity of a crop that can, in a sustainable and effective way, reduce hunger and poverty and make communities economically stronger and more stable over the long term," said James Carrington, Ph.D., president of the Danforth Center.

The funding broadens the impact of the TERRA-REF program launched in June 2015 by the Danforth Center with support from the U.S. Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E). TERRA-REF aims to optimize breeding strategies for improving the yield and stress tolerance of sorghum (Sorghum bicolor), a leading bioenergy feedstock crop in the United States, but also a critical source of nutrition for millions of people living in Sub-Saharan Africa.

The Sorghum Genomics Toolbox, led by the Danforth Center with partners at ICRISAT (India), CERAAS-ISRA (Senegal), CIRAD (France), EIAR (Ethiopia), HudsonAlpha Institute for Biotechnology, Kansas State University, University of Arizona, George Washington University, and NRGene (Israel), is employing cutting-edge technologies to sequence and analyze grain sorghum genomes, capture tens of millions of phenotypic observations over the course of a growing season, and accelerate breeding efforts by connecting phenotypes to genotypes in the field.

"Initially we launched the TERRA-REF project to gain a greater understanding of the phenotypic and genomic variation of bioenergy sorghum, and to lay the foundation for genomics-enabled breeding strategies for U.S. sorghum bioenergy feedstock production, but the same strategies are directly extendable to food security crops," said Todd Mockler, Ph.D., Geraldine and Robert Virgil Distinguished Investigator, Danforth Center. "I'm grateful to the Bill & Melinda Gates Foundation for recognizing the need to extend the application of advanced genomics and phenomics technologies to food crops that will benefit millions of people living in the developing world."

Sorghum is a member of the grass family and is grown worldwide. It is of interest, not only because it is a staple crop in Sub-Saharan Africa, but because grain sorghum yields have been flat or declining due to the lack of sufficient investment in the development of new improved varieties. Sorghum is very resilient to drought and heat stress. Natural genetic diversity in sorghum makes it a promising system for identifying stress-resistance mechanisms in grasses that may have been lost during the domestication of related cereal crops. It is among the most efficient crops in conversion of solar energy and use of water, making it an ideal crop to target for improvement to meet the predicted doubling of global food demand by 2050.

"The National Sorghum Producers is excited to see the additional investment into sorghum research and breeding, which will help farmers around the world as they continue to deal with the challenges of advancing sorghum genetics to address climate variability and the need for increased food sustainability," said Tim Lust, chief executive officer of the National Sorghum Producers.

###

About The Donald Danforth Plant Science Center

Founded in 1998, the Donald Danforth Plant Science Center is a not-for-profit research institute with a mission to improve the human condition through plant science. Research, education and outreach aim to have impact at the nexus of food security and the environment, and position the St. Louis region as a world center for plant science. The Center's work is funded through competitive grants from many sources, including the National Institutes of Health, U.S. Department of Energy, National Science Foundation, and the Bill & Melinda Gates Foundation. Follow us on Twitter at @DanforthCenter.

Media Contact

Melanie Bernds
[email protected]
314-587-1647

Danforth Plant Science Center

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Methylome Changes Drive Fiber Differentiation in Cotton

October 11, 2025

Factors Influencing Complete Child Immunization in Ghana

October 11, 2025

Optimizing Recruitment and Biospecimen Collection in Studies

October 11, 2025

Pristine Interface of Zirconium Oxide and MoSâ‚‚

October 11, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1208 shares
    Share 482 Tweet 302
  • New Study Reveals the Science Behind Exercise and Weight Loss

    102 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    97 shares
    Share 39 Tweet 24
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    87 shares
    Share 35 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Methylome Changes Drive Fiber Differentiation in Cotton

Factors Influencing Complete Child Immunization in Ghana

Optimizing Recruitment and Biospecimen Collection in Studies

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.