• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Dalian Coherent Light Source reveals strong isotope effects in photodissociation of water isotopolog

Bioengineer by Bioengineer
July 23, 2021
in Chemistry
Reading Time: 1 min read
1
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: DICP

Recently, a research group led by Prof. YUAN Kaijun and Prof. YANG Xueming from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences revealed strong isotope effects in photodissociation of the water isotopologue (HOD) using the Dalian Coherent Light Source.

Their findings were published in Science Advances on July 23.

“Our experimental results illustrate dramatically different quantum state population distributions of OH and OD fragments from HOD photodissociation. The branching ratios of the H+OD and D+OH channels display large wavelength-dependent isotopic fractionation,” said Prof. YUAN.

Because water is one of the most abundant species in the solar nebula, photodissociation of water and its isotopologue by solar vacuum ultraviolet photons may be an alternative source of the D/H isotope heterogeneity, and this effect must be considered in photochemical models.

The photochemical processes identified in this work may vary the D/H isotopic ratios in the inner and outer regions, and/or in different periods of the solar nebula, which may cause the D/H isotope heterogeneity in the solar system.

###

This research was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences, Chemical Dynamics Research Center, and the National Natural Science Foundation of China.

Media Contact
Jean Wang
[email protected]

Tags: AstrophysicsChemistry/Physics/Materials Sciences
Share13Tweet8Share2ShareShareShare2

Related Posts

New Study Warns Seasonal Freeze–Thaw Cycles Could Cause “Green” Biochar to Release Toxic Metals

New Study Warns Seasonal Freeze–Thaw Cycles Could Cause “Green” Biochar to Release Toxic Metals

September 20, 2025
blank

Gravitino Emerges as a Promising New Candidate for Dark Matter

September 19, 2025

Advancing Quantum Chemistry: Enhancing Accuracy in Key Simulation Methods

September 19, 2025

Neutrino Mixing in Colliding Neutron Stars Alters Merger Dynamics

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Key Drivers of Corporate Governance in Burundi’s Cooperatives

Revolutionizing Sustainable Construction: The Role of Cardboard and Earth

TMolNet: Revolutionizing Molecular Property Prediction

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.