• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Cystic fibrosis patients may see personalized treatments emerge from “drug screening in a dish,” stem cell research finds

Bioengineer by Bioengineer
October 21, 2021
in Biology
Reading Time: 2 mins read
0
New therapy screening assay
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Stem cell researchers may soon have a new way to identify and develop novel, personalized therapies for patients with Cystic Fibrosis (CF) who lack effective treatments.

New therapy screening assay

Credit: Christine Bear, Hospital for Sick Kids and University of Toronto, Canada

Stem cell researchers may soon have a new way to identify and develop novel, personalized therapies for patients with Cystic Fibrosis (CF) who lack effective treatments.

Currently, not all CF patients have access to effective treatments, especially those with very rare CF-causing mutations. To identify new therapies for these people, precursor lung cells (cells not fully developed yet) grown from a patients’ own reprogrammed blood cells can be used to screen for new drugs and the best drug responses validated in their own mature airway (nasal) cells. This “drug screening in a dish” can reduce the time and improve the outcomes for CF treatments.

Cystic fibrosis (CF) is a genetic disease with 1,000 new cases being diagnosed in the United States per year (there are about 30,000 individuals in the US and more than 70,000 individuals worldwide with CF), leading to decreased quality of life and shortened life expectancy due to persistent lung infection and inflammation, and dysfunctions in other organs. CF is caused by mutations in one specific gene, where 2,500 different mutations in that gene have been described and at least 450 are known to be disease-causing in patients. Although treatments for CF are available, the response to these treatments varies considerably from patient to patient, depending on the specific mutation the patient carries as well as on other genetic background factors.

A personalized medicine approach, where tissue from individual patients is used to screen for new drugs in the lab, would greatly benefit those patients who do not currently respond well to available medication. Research from Christine Bear (Hospital for Sick Children and University of Toronto, Canada) and colleagues published in Stem Cell Reports used the open Canadian resource called CFIT, to grow tissues from CF patients in the lab in a format amenable to high throughput screening.

Their work generated precursor lung cells from induced pluripotent stem cells (iPSC) made from the patient’s blood through a process called reprogramming. Consequently, these iPSC-lung cells contain the specific CF-causing mutation and genetic background specific for each patient. The iPSC-precursor lung cells can be grown in large quantities in the lab, affording sufficient cells for drug screens in new high-throughput format. Encouragingly, responses of iPSC-precursor lung cells to chemical compounds closely reflected responses measured in nasal epithelial cells from the same patient. The researchers expect that based on these results, patient-derived iPSC-lung cells will enable the screen of large drug libraries or biologics like mRNA, to help identify new therapies particularly for those patients with no access to effective therapies.



Journal

Stem Cell Reports

DOI

10.1016/j.stemcr.2021.09.020

Article Title

New therapy screening assay showing functional rescue of lung progenitor cells from a person with Cystic Fibrosis caused by nonsense mutation (W1282X)

Article Publication Date

21-Oct-2021

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Revolutionary ODE-VAE Enhances Single-Cell Data Clustering

September 6, 2025
Fuzzy Logic Enhances Species Distribution Model Comparison

Fuzzy Logic Enhances Species Distribution Model Comparison

September 6, 2025

Unveiling EZH2-Related lncRNAs in Gastric Cancer Insights

September 6, 2025

Silver Grunt Growth and Spawning in Okinawa Waters

September 6, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phase II Study Finds Iza-Bren Plus Osimertinib Achieves 100% Response Rate in EGFR-Mutated NSCLC

Novel Antibody-Drug Conjugate Demonstrates Promising Efficacy in EGFR-Mutated NSCLC Patients

COMPEL Study Finds Adding Chemotherapy to Osimertinib After Progression Enhances Progression-Free Survival in EGFR-Mutated NSCLC

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.