• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

CSIC researchers use whole living cells as ‘templates’ to seek for bioactive molecules

Bioengineer by Bioengineer
May 27, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Lung cancer cells were used to design a methodology that could help in the future to differentiate healthy versus cancerous cells

IMAGE

Credit: Daniel Carbajo

A study performed by researchers at the Institute for Advanced Chemistry of Catalonia (IQAC) from the Spanish National Research Council (CSIC) pioneers the use of whole living cells (human lung adenocarcinoma) in dynamic combinatorial chemistry systems. This research, published in the journal Angewandte Chemie International Edition, proposes a new methodology to discover new bioactive molecules in a realistic biological medium. This methodology could help in the future to develop methods to differentiate healthy versus cancer cells, or to protect the extracellular matrix against pathogens.

This new methodology is based on Dynamic Combinatorial Chemistry (DCC), which combines in a single process the selection, identification and preparation of molecules for a given application, accelerating the development of new functional compounds. Therefore, this methodology has a great potential in the rapid identification of new molecules with potential biological activity. In the present work, the group led by Ignacio Alfonso, from the Institute of Advanced Chemistry of Catalonia, pioneers the use of ‘live templates’ for the identification and optimization of new ligands (simple synthetic molecules) for biological targets.

“In our study we have worked with cancer cells used as a ‘templates’, so the molecule able to interact with the outside of these cells (templates), will increase its concentration over the mixture of molecules that integrate the dynamic combinatorial library. The extracellular matrix is closely related to cellular communication and signaling, and it is essential in processes such as cancer metastasis or cellular infection by pathogens. Besides, it is the first barrier that a drug has to cross to enter our cells”, explains the researcher. “Another hurdle is the difficulty to design molecules able to interact with the extracellular matrix due to its complex structure. But the results of our study allow us to identify and quantify the ligands for the extracellular matrix directly using living cells, which opens up multiple development possibilities in this field of research”.

The next step was to synthesize the amplified molecule. Later, the interaction between these molecules and the extracellular matrix of the living cells was confirmed by means of Nuclear Magnetic Resonance. Finally, after these studies with cells, assays between the identified molecules and chondroitin sulfate, the major component of the glycosaminoglycans in the extracellular matrix of this type of cells, were carried out. “We also used molecular dynamics simulations to understand the molecular recognition process that explains our results from a chemical point of view”, explains Alfonso.

The methodology used in this study is an excellent research tool with potential applications in disease characterization and diagnosis. “It could lead to the faster discovery of bioactive molecules, since the selection is made in a medium that is more similar to the biological medium in which these biomolecules will act”, concludes the researcher.

###

Media Contact
Ana Sotres
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/anie.202004745

Tags: BiochemistryCell BiologyChemical/Biological WeaponsChemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Iridium Catalysis Enables Piperidine Synthesis from Pyridines

December 3, 2025
Neighboring Groups Speed Up Polymer Self-Deconstruction

Neighboring Groups Speed Up Polymer Self-Deconstruction

November 28, 2025

Activating Alcohols as Sulfonium Salts for Photocatalysis

November 26, 2025

Carbonate Ions Drive Water Ordering in COâ‚‚ Reduction

November 25, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    204 shares
    Share 82 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    121 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    107 shares
    Share 43 Tweet 27
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Cancer Immunotherapy by Targeting DNA Repair

Evaluating eGFR Equations in Chinese Children

Metformin-Alogliptin Combo vs. Monotherapy in Diabetes

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.