• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

CSHL groundcherry research bears new fruits

Bioengineer by Bioengineer
October 31, 2022
in Chemistry
Reading Time: 3 mins read
0
Groundcherry inflated calyx
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Over 34 million people in the U.S. don’t have enough food. More diverse and adaptable crops are needed to address challenges in food production made worse by climate change. Small, sweet berries called groundcherries may not feed the country, but along with other related “orphan crops,” they could strengthen food supplies. Unfortunately, these distant relatives of tomatoes aren’t ready for large-scale production—at least not yet.

Groundcherry inflated calyx

Credit: Lippman Lab/CSHL, 2022

Over 34 million people in the U.S. don’t have enough food. More diverse and adaptable crops are needed to address challenges in food production made worse by climate change. Small, sweet berries called groundcherries may not feed the country, but along with other related “orphan crops,” they could strengthen food supplies. Unfortunately, these distant relatives of tomatoes aren’t ready for large-scale production—at least not yet.

Cold Spring Harbor Laboratory (CSHL) Professor and HHMI Investigator Zachary Lippman is working to change that. Alongside CSHL and HHMI postdoc Jia He, Lippman built genetic blueprints, or models, for two types of groundcherry. These new models can guide plant geneticists toward unlocking groundcherries’ untapped potential. They may also be key in scaling up other nightshade plants for widespread use. Lippman says:

“The nightshade family encompasses more than 20 crops. There’s the major crops—potato, tomato, eggplant—and then there are minor crops, or orphan crops, which are either semi-domesticated or simply wild. A lot of those have not received a lot of research attention, but might have more potential for greater production if they could be developed further.”

Groundcherries are ideal models of the nightshade family because of their similar genetics and long evolutionary history. They’re also common in North America, easy to grow, and easy to genetically modify. But their most interesting attribute, Lippman says, might be the papery, balloon-like husk, or inflated calyx, that surrounds their berries.

“It seems to have evolved independently multiple times in flowering plants,” Lippman explains. “It’s not clear whether it’s a quirk of evolution, an adaptive trait, or both. But one thing, in my mind, is very clear—it’s one of the coolest evolutionary novelties to emerge in plants.”

Previous research on nightshades suggested genes called MADS-box were responsible for the inflated calyx’s emergence. Using the genome editing tool CRISPR on their new groundcherry models, Lippman and He switched off the MADS-box genes one by one. They found that the plants still grew an inflated calyx whether they had the genes or not. The models also allowed them to uncover a gene essential for inflated calyx development. He says:

“Without these genomic resources, it’s very hard to pinpoint the molecular mechanisms underlying some of the traits that arose through evolution. We think with our new resource, our new genomes, we can dissect this whole process.”

Lippman calls the new groundcherry models “the poster children” for what’s coming next from his lab. Their goal is to pepper the nightshade family with many new plant models, which will make it easier to improve crops through genome editing. These models will also help provide a better understanding of plants’ evolutionary development.

“Beyond improving crops, these new models can give us the means to answer the fundamental question of how new traits emerge in plants,” Lippman says. “I think Jia’s going to be the one to tackle that going forward.”



Journal

The Plant Cell

DOI

10.1093/plcell/koac305

Article Title

Establishing Physalis as a Solanaceae model system enables genetic reevaluation of the inflated calyx syndrome

Article Publication Date

21-Oct-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Gravitino Emerges as a Promising New Candidate for Dark Matter

September 19, 2025
blank

Advancing Quantum Chemistry: Enhancing Accuracy in Key Simulation Methods

September 19, 2025

Neutrino Mixing in Colliding Neutron Stars Alters Merger Dynamics

September 19, 2025

“‘Click-to-Glue’ Technology Transforms γδ T Cells into Precision Cancer-Fighting Warriors”

September 19, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

U of A and UNM Secure $43.6M NIH Grant to Advance Translational Clinical Research

Peace Talks Between Türkiye and the PKK Present a Historic Opportunity for Environmental Restoration

HSP27 and HSP70 Levels Link to Laryngeal Cancer Prognosis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.