• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Cryo-electron microscopy achieves unprecedented resolution using new…

Bioengineer by Bioengineer
January 24, 2018
in Biology, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: C. Hryc and the Chiu Lab, Baylor College of Medicine

Cryo-electron microscopy (cryo-EM)–which enables the visualization of viruses, proteins, and other biological structures at the molecular level–is a critical tool used to advance biochemical knowledge. Now Lawrence Berkeley National Laboratory (Berkeley Lab) researchers have extended cryo-EM's impact further by developing a new computational algorithm that was instrumental in constructing a 3-D atomic-scale model of bacteriophage P22 for the first time.

Over 20,000 two-dimensional cryo-EM images of bacteriophage P22 (also known as the P22 virus that infects the common bacterium Salmonella) from Baylor College of Medicine were used to make the model. The results were published by researchers from Baylor College of Medicine, Massachusetts Institute of Technology, Purdue University and Berkeley Lab in the Proceedings of the National Academies of Sciences earlier in March.

"This is a great example of how to exploit electron microscopy technology and combine it with new computational methods to determine a bacteriophage's structure," said Paul Adams, Berkeley Lab's Molecular Biophysics & Integrated Bioimaging division director and a co-author of the paper. "We developed the algorithms — the computational code — to optimize the atomic model so that it best fit the experimental data."

Pavel Afonine, a Berkeley Lab computational research scientist and paper co-author, took the lead in developing the algorithm using Phenix, a software suite used traditionally in X-ray crystallography for determining macromolecular structures.

The successful rendering of bacteriophage P22's 3-D atomic-scale model allows researchers to peek inside the virus' protein coats at resolution. It is the culmination of several years of work that previously had enabled Baylor College researchers to trace out most of the protein's backbone, but not the fine details, according to Corey Hryc, co-first author and a graduate student of Baylor biochemistry professor Wah Chiu.

"Thanks to this exquisite structural detail, we have determined the protein chemistry of the P22 virus," Chiu said. "I think it is important that we provide detailed annotations with the structure so other researchers can use it for their future experiments," he added. Chiu's lab has been using cryo-EM and computer reconstruction techniques to build 3-D molecular structures for almost 30 years.

And the findings could have valuable biological implications as well.

Thanks to the 3-D atomic-scale model, it's now "possible to see the interactions between the pieces making up the P22 virus, which are critical to making it stable," Adams said. This helps researchers figure out how to make chemicals that can bind to certain proteins. Adams underscores that the ability to understand the configuration of atoms in molecular space can be used to generate new insights into drug design and development.

###

The National Institutes of Health funded this work.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact

Jon Weiner
[email protected]
510-486-4014
@BerkeleyLab

Home Video

Share12Tweet7Share2ShareShareShare1

Related Posts

Obesity’s Effects on Bones: Molecules and Metabolism

September 24, 2025
blank

Electrolytes Impact Graphene Exfoliation and Supercapacitor Efficiency

September 24, 2025

Trends in Breast Cancer Screening for Older Women

September 24, 2025

Long-Term Durability of Valoctocogene Roxaparvovec in Hemophilia A

September 24, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12
  • Rapid Spread of Drug-Resistant Fungus Candidozyma auris in European Hospitals Prompts Urgent Warning from ECDC

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Obesity’s Effects on Bones: Molecules and Metabolism

Electrolytes Impact Graphene Exfoliation and Supercapacitor Efficiency

Trends in Breast Cancer Screening for Older Women

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.