• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

CRISPR meets single-cell sequencing in new screening method

Bioengineer by Bioengineer
January 19, 2017
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Wolfgang Däuble / CeMM

(Vienna, 19 January 2017) Genome editing using CRISPR/Cas9 "gene scissors" is a powerful tool for biological discovery and for identifying novel drug targets. In pooled CRISPR screens, a large number of cells are edited simultaneously using CRISPR guide-RNAs against thousands of different genes. Next, some of the edited cells are experimentally selected, and their guide-RNAs are counted to determine which genes are most important for the studied biological mechanism.

This screening method is most useful for addressing questions that are directly linked to a cell's ability to grow, for example identifying genes that protect cancer cells against chemotherapy or immune cells against HIV infection. In contrast, pooled screens are not well suited for studying gene regulation and other complex biological mechanisms. To understand how multiple genes work together to regulate cell state, it is currently necessary to grow, edit, and analyze cells separately for each CRISPR targeted gene, which is tedious and expensive.

In a new article published in Nature Methods (DOI: 10.1038/nmeth.4177), a team of CeMM scientists led by Christoph Bock now present a method that combines the strengths of pooled and arrayed CRISPR screens. By integrating CRISPR genome editing with single-cell RNA sequencing, they were able to determine the gene-regulatory impact of many genes in parallel, studying thousands of individual cells in a single experiment.

Bock's team succeeded with an elegant design that takes advantage of cutting-edge molecular technologies: The study's first author Paul Datlinger created a viral vector for making the CRISPR guide-RNAs visible in single-cell sequencing experiments, and the latest droplet-based methods for single-cell RNA sequencing provided sufficient throughput to characterize the effect of thousands of genome editing events in individual cells.

Creatively combining two of the most promising fields of genomics, the CROP-seq (for "CRISPR droplet sequencing") method enables high-throughput analysis of gene regulation at a scale and detail that would be difficult to achieve with other methods. Furthermore, with falling single-cell sequencing costs, this technology could give rise to the first comprehensive maps of the regulatory effects for each of the 23,000 genes in the human genome.

"We will use CROP-seq to study the interplay of genetic and epigenetic factors in leukemia development", says Christoph Bock, advancing the laboratory's European Research Council (ERC) funded project on epigenome programming. "If we understand what it takes to make a cancer cell in the test tube, we can find new ways to interfere and revert cells to a less harmful state".

CROP-seq was developed as an open source method. All data, protocols, reagents and software that are part of CROP-seq will be freely shared by CeMM, enabling other scientists to use and extend the method in their own work. The ambition to making new methods as widely available as possible is part of CeMM's commitment to advancing biomedical research.

###

Attached pictures: 1.: Microfluidic droplets capture single, genome-edited cells and barcode their transcriptome (© Paul Datlinger/CeMM) 2. Christoph Bock, Principal Investigator at CeMM (© Wolfgang Däuble / CeMM) 3. A scientist in Christoph Bock's lab studying gene regulation (© Wolfgang Däuble / CeMM)

The study "Pooled CRISPR screening with single-cell transcriptome readout" was published in Nature Methods on 18 January 2017. DOI: 10.1038/nmeth.4177

Authors: Paul Datlinger, André F Rendeiro, Christian Schmidl, Thomas Krausgruber, Peter Traxler, Johanna Klughammer, Linda C Schuster, Amelie Kuchler, Donat Alpar, Christoph Bock

Funding: The study was partly funded by a New Frontiers Group award of the Austrian Academy of Sciences and by an ERC Starting Grant.

Christoph Bock is a Principal Investigator at CeMM. Trained as a bioinformatician, he leads a team that integrates biology, medicine, and computer science – working on a vision of precision medicine that is driven by large datasets and a deep understanding of biological disease mechanisms. He is also a guest professor at the Medical University of Vienna's Department for Laboratory Medicine, and he coordinates the genome sequencing activities of CeMM and the Medical University of Vienna. At CeMM, he co-initiated and leads Genom Austria, the Austrian contribution to the International Network of Personal Genome Projects, and he is a principal investigator in the BLUEPRINT project and the International Human Epigenome Consortium. http://epigenomics.cemm.oeaw.ac.at/

The mission of CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences is to achieve maximum scientific innovation in molecular medicine to improve healthcare. At CeMM, an international and creative team of scientists and medical doctors pursues free-minded basic life science research in a large and vibrant hospital environment of outstanding medical tradition and practice. CeMM's research is based on post-genomic technologies and focuses on societally important diseases, such as immune disorders and infections, cancer and metabolic disorders. CeMM operates in a unique mode of super-cooperation, connecting biology with medicine, experiments with computation, discovery with translation, and science with society and the arts. The goal of CeMM is to pioneer the science that nurtures the precise, personalized, predictive and preventive medicine of the future. CeMM trains a modern blend of biomedical scientists and is located at the campus of the General Hospital and the Medical University of Vienna. http://www.cemm.at

For further information please contact:

Mag. Wolfgang Däuble
Media Relations Manager
CeMM
Research Center for Molecular Medicine of the Austrian Academy of Sciences
Lazarettgasse 14, AKH BT 25.3
1090 Vienna, Austria
Phone +43-1/40160-70 057
Fax +43-1/40160-970 000
[email protected]
http://www.cemm.at

Media Contact

Wolfgang Däuble
[email protected]
43-140-160-70057
@CeMM_News

http://www.cemm.oeaw.ac.at

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

HIRAID Framework Enhances Nurse and Patient Outcomes

October 4, 2025

tRF-34-86J8WPMN1E8Y2Q Fuels Gastric Cancer Progression

October 4, 2025

Discovering Wuwei Xiaodu Decoction’s Anti-Inflammatory Mechanisms

October 4, 2025

“Rice Cultivar Transcriptome Reveals Heat Stress Response Genes”

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

HIRAID Framework Enhances Nurse and Patient Outcomes

tRF-34-86J8WPMN1E8Y2Q Fuels Gastric Cancer Progression

Discovering Wuwei Xiaodu Decoction’s Anti-Inflammatory Mechanisms

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.