• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Creating order by mechanical deformation in dense active matter

Bioengineer by Bioengineer
September 27, 2021
in Biology
Reading Time: 3 mins read
0
Image of simulation
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Living or biological systems cannot be easily understood using the standard laws of physics, such as thermodynamics, as scientists would for gases, liquids or solids. Living systems are active, demonstrating fascinating properties such as adapting to their environment or repairing themselves. Exploring the questions posed by living systems using computer simulations, researchers at the University of Göttingen have now discovered a novel type of ordering effect generated and sustained by a simple mechanical deformation, specifically steady shear. The results were published in PNAS.

Image of simulation

Credit: Dr Rituparno Mandal

Living or biological systems cannot be easily understood using the standard laws of physics, such as thermodynamics, as scientists would for gases, liquids or solids. Living systems are active, demonstrating fascinating properties such as adapting to their environment or repairing themselves. Exploring the questions posed by living systems using computer simulations, researchers at the University of Göttingen have now discovered a novel type of ordering effect generated and sustained by a simple mechanical deformation, specifically steady shear. The results were published in PNAS.

Understanding living systems, such as tissues formed by cells, poses a significant challenge because of their unique properties, such as adaptation, self-repair and self-propulsion. Nonetheless, they can be studied using models that treat them as just an unusual, “active” form of physical matter. This can reveal extraordinary dynamical or mechanical properties. One of the puzzles is how active materials behave under shear (the deformation produced by moving the top and bottom layers sideways in opposite directions, like sliding microscope cover plates against each other). Researchers at the Institute for Theoretical Physics, University of Göttingen explored this question and discovered a novel type of ordering effect that is generated and sustained by steady shear deformation. The researchers used a computer model of self-propelling particles where each particle is driven by a propulsion force that changes direction slowly and randomly. They found that while the flow of the particles looks similar to that in ordinary liquids, there is a hidden order revealed by looking at the force directions: these tend to point towards the nearest (top or bottom) plate, while particles with sideways forces aggregate in the middle of the system.

 “We were exploring the response of a model active material under steady driving, where the system is sandwiched between two walls, one stationary and the other moving to generate shear deformation. What we saw was that at a sufficiently strong driving force, an interesting ordering effect emerges,” comments Dr Rituparno Mandal, Institute for Theoretical Physics at the University of Göttingen. “We now also understand the ordering effect using a simple analytical theory and the predictions from this theory match surprisingly well with the simulation.”

Senior author Professor Peter Sollich, also from the Institute for Theoretical Physics, Universiy of Göttingen, explains, “Often an external force or driving force destroys ordering. But here the driving by shear flow is key in providing mobility to the particles that make up the active material, and they actually need this mobility to achieve the observed order. The results will open up exciting possibilities for researchers investigating the mechanical responses of living matter.”

Original publication: R Mandal, P Sollich “Shear induced orientational ordering in an active glass former”, Proceedings of the National Academy of Sciences (PNAS 2021). DoI: 10.1073/pnas.2101964118

This research was made possible thanks to funding from the European Union’s Horizon 2020 research and innovation programme under a Marie Skłodowska-Curie grant.

Contact

Dr Rituparno Mandal

University of Göttingen

Institute of Theoretical Physics

Friedrich Hund Platz 1, 37077 Göttingen, Germany

Email: [email protected]

Tel: +49 (0)551 39 26958

 

Professor Peter Sollich

University of Göttingen

Institute of Theoretical Physics

Friedrich Hund Platz 1, 37077 Göttingen, Germany

Email: [email protected]

www.uni-goettingen.de/en/583011.html



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.2101964118

Method of Research

Computational simulation/modeling

Subject of Research

Not applicable

Article Title

Shear induced orientational ordering in an active glass former

Article Publication Date

28-Sep-2021

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

New Zealand Rabbit TCT Proteins: Climate Adaptation Insights

September 5, 2025
FDX1 Drives Malignant Progression in Triple-Negative Breast Cancer

FDX1 Drives Malignant Progression in Triple-Negative Breast Cancer

September 5, 2025

Plant Polyphenols: Key Players in Human Health

September 5, 2025

How Corals Without Eyes Sense Light

September 5, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Comparing Radiation Exposure: Photon-Counting vs. Energy-Integrating CT

Deep Learning Enhances Fetal Cerebellum Ultrasound Diagnosis

Kessler Foundation’s Dr. Trevor Dyson-Hudson Receives James J. Peters Distinguished Service Award from ASCIP

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.