• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Creating new molecules through sustainable methods guided by light: the challenge of the ERC Advanced Grant PHOTOZYME

Bioengineer by Bioengineer
April 11, 2024
in Chemistry
Reading Time: 3 mins read
0
Professor Paolo Melchiorre
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Light and nature as valuable allies in the production of molecules essential for our daily lives. This is the horizon envisioned by PHOTOZYME, a new research project led by Paolo Melchiorre, professor at the Department of Industrial Chemistry “Toso Montanari” of the University of Bologna, funded by the European Research Council (ERC) with an Advanced Grant worth 3 million euros.

The challenge is to combine three modern strategies of chemical transformation – biocatalysis, photochemistry, and directed evolution – laying the groundwork for sustainable molecular synthesis, from which new drugs, for instance, can emerge.

PHOTOZYME concludes a trajectory of research supported by the European Research Council over the last 15 years: Professor Melchiorre has indeed addressed these topics with an ERC Starting Grant in 2011, an ERC Consolidator Grant in 2016, and an ERC Proof-of-Concept Grant in 2019.

“The peculiarity of this project is the introduction of light, and therefore photochemistry, as the activating element of biocatalysis, which uses enzymes as true biological catalysts, capable of orchestrating chemical reactions with surprising precision and efficiency,” explains Melchiorre. “Through illumination with visible radiation, enzymes are stimulated to a higher energy level, paving the way for new radical reactions and a wide range of synthetic opportunities.”

The goal, in short, is to develop new photobiocatalytic tools to convert basic and readily available chemical substances (such as fatty acids) into chiral molecules, thus with a well-defined three-dimensionality, usable for various applications.

To further enhance these catalytic capabilities, directed evolution is added. This third ingredient of the PHOTOZYME project uses an engineering process to subject enzymes to a sort of “training,” making them more suitable and efficient in carrying out specific molecular reactions promoted by light.

“The use of light will allow programming completely new catalysis mechanisms within enzymes, enabling them to catalyse processes completely different from those for which they have evolved,” concludes Melchiorre. “This not only expands their range of use but also introduces the possibility of developing innovative synthesis pathways for molecules of interest, for example, for the creation of new drugs.”

Professor Paolo Melchiorre

Credit: University of Bologna

Light and nature as valuable allies in the production of molecules essential for our daily lives. This is the horizon envisioned by PHOTOZYME, a new research project led by Paolo Melchiorre, professor at the Department of Industrial Chemistry “Toso Montanari” of the University of Bologna, funded by the European Research Council (ERC) with an Advanced Grant worth 3 million euros.

The challenge is to combine three modern strategies of chemical transformation – biocatalysis, photochemistry, and directed evolution – laying the groundwork for sustainable molecular synthesis, from which new drugs, for instance, can emerge.

PHOTOZYME concludes a trajectory of research supported by the European Research Council over the last 15 years: Professor Melchiorre has indeed addressed these topics with an ERC Starting Grant in 2011, an ERC Consolidator Grant in 2016, and an ERC Proof-of-Concept Grant in 2019.

“The peculiarity of this project is the introduction of light, and therefore photochemistry, as the activating element of biocatalysis, which uses enzymes as true biological catalysts, capable of orchestrating chemical reactions with surprising precision and efficiency,” explains Melchiorre. “Through illumination with visible radiation, enzymes are stimulated to a higher energy level, paving the way for new radical reactions and a wide range of synthetic opportunities.”

The goal, in short, is to develop new photobiocatalytic tools to convert basic and readily available chemical substances (such as fatty acids) into chiral molecules, thus with a well-defined three-dimensionality, usable for various applications.

To further enhance these catalytic capabilities, directed evolution is added. This third ingredient of the PHOTOZYME project uses an engineering process to subject enzymes to a sort of “training,” making them more suitable and efficient in carrying out specific molecular reactions promoted by light.

“The use of light will allow programming completely new catalysis mechanisms within enzymes, enabling them to catalyse processes completely different from those for which they have evolved,” concludes Melchiorre. “This not only expands their range of use but also introduces the possibility of developing innovative synthesis pathways for molecules of interest, for example, for the creation of new drugs.”



Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Lightweight Multi-Wavelength Network Enables Efficient, High-Fidelity Full-Color 3D Holographic Displays

Innovative Lightweight Multi-Wavelength Network Enables Efficient, High-Fidelity Full-Color 3D Holographic Displays

November 3, 2025
Dark Matter Conforms to Gravity, New Findings Reveal

Dark Matter Conforms to Gravity, New Findings Reveal

November 3, 2025

Breakthrough in Alkaloid Chemistry: First Asymmetric Syntheses of Seven Quebracho Indole Alkaloids Achieved in Just 7-10 Steps Using “Antenna Ligands”

October 31, 2025

Dual-Function Electrocatalysis: A Comprehensive Overview

October 31, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Co-Partisan Messages Boost Climate Action Despite Beliefs

Krill Oil Enhances Curcumin Stability in Liposomes

EHU Showcases Breakthrough Materials Capable of Absorbing 99.5% of Light for Solar Tower Applications

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.