• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Creating music by thought alone

Bioengineer by Bioengineer
July 12, 2017
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Photo courtesy of the University of Washington.

Neurologists have created a hands-free, thought-controlled musical instrument, which they've recently described in a report in Frontiers in Human Neuroscience. Researchers hope that this new instrument will help empower and rehabilitate patients with motor disabilities such as those from stroke, spinal cord injury, amputation, or amyotrophic lateral sclerosis (ALS).

"The Encephalophone is a musical instrument that you control with your thoughts, without movement," explains Thomas Deuel, a neurologist at Swedish Medical Center and a neuroscientist at the University of Washington, and first author of the report.

"I am a musician and neurologist, and I've seen many patients who played music prior to their stroke or other motor impairment, who can no longer play an instrument or sing," says Deuel. "I thought it would be great to use a brain-computer instrument to enable patients to play music again without requiring movement."

The Encephalophone collects brain signals through a cap that transforms specific signals into musical notes. The invention is coupled with a synthesizer, allowing the user to create music using a wide variety of instrumental sounds.

Dr. Deuel originally developed the Encephalophone (patent pending) in his own independent laboratory, in collaboration with Dr. Felix Darvas, a physicist at the University of Washington. In this first report, they describe their development of the instrument, as well as their initial studies showing evidence of how easily the instrument might be used. This preliminary study showed that a trial group of 15 healthy adults were able to use the instrument to correctly recreate musical tones, with no prior training.

"We first sought to prove that novices–subjects who had no training on the Encephalophone whatsoever–could control the device with an accuracy that was better than random," says Deuel. "These first subjects did quite well, way above chance probability on their very first try."

The Encephalophone can be controlled via two independent types of brain signals: either those associated with the visual cortex (i.e. closing one's eyes), or those associated with thinking about movement. Control by thinking about movement may be the most useful for disabled patients, and Deuel plans to continue researching this application. But for now, this current study shows that, at least for this small group of novice users, control by eye closing is more accurate than control by imagining movements.

The Encephalophone is based on brain-computer interfaces using an old method, called electroencephalography, which measures electrical signals in the brain. Scientists first began converting these signals into sounds in the 1930s and, later, into music in the 1960s. But these methods were still difficult to control and were not easily accessible to non-specialist users.

In a collaboration with the Center for Digital Arts and Experimental Media (DXARTS), Deuel has built upon such research to make the Encephalophone more musically versatile, as well as easier to use.

Deuel and his collaborators are already working with more people to see how much users can improve with training. Deuel also plans to begin clinical trials of the Encephalophone later this year to see whether it may be useful or enjoyable for disabled patients.

"There is great potential for the Encephalophone to hopefully improve rehabilitation of stroke patients and those with motor disabilities," Deuel says.

###

Media Contact

Melissa Cochrane
[email protected]
0041-787-246-393
@frontiersin

http://www.frontiersin.org

Related Journal Article

http://dx.doi.org/10.3389/fnhum.2017.00213

Share12Tweet8Share2ShareShareShare2

Related Posts

Study Finds Greener Environments May Reduce the Link Between Air Pollution and Breast Cancer: Insights from UK Biobank Data

November 12, 2025

Mount Sinai Study Uncovers Why Certain Myeloma Patients Remain Cancer-Free Long After CAR T Therapy

November 12, 2025

Factors Influencing Georgia’s HIV Healthcare Providers’ Attitudes

November 12, 2025

North America’s First Resource Highlights Research on Health Benefits of Fermented Foods

November 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    317 shares
    Share 127 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    209 shares
    Share 84 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    141 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1306 shares
    Share 522 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Delayed Childhood Blood Cancer Diagnosis in Uganda

Revolutionary Angio-CT Technology Revolutionizes Imaging for Superior Patient Care

Study Finds Greener Environments May Reduce the Link Between Air Pollution and Breast Cancer: Insights from UK Biobank Data

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.