• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Creating a nanoscale on-off switch for heat

Bioengineer by Bioengineer
December 16, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Polymer thermal regulator transforms from conductor to insulator and back again

IMAGE

Credit: College of Engineering, Carnegie Mellon University

Polymers are used to develop various materials, such as plastics, nylons, and rubbers. In their most basic form, they are made up of many of identical molecules joined together over and over, like a chain. If you engineer molecules to join together in specific ways, you can control the characteristics of the resulting polymer.

Using this method, Sheng Shen, an associate professor of mechanical engineering at Carnegie Mellon University, and his research team created a polymer thermal regulator that can quickly transform from a conductor to an insulator, and back again. When it’s a conductor, heat transfers quickly. When it’s an insulator, heat transfer much more slowly. By switching between the two states, the thermal regulator can control its own temperature, as well as the temperature of its surroundings, such as a refrigerator or computer.

In order to switch between high to low conductivity, the very structure of the polymer has to change. This transformation is activated solely with heat. The polymer starts “with a highly-ordered crystalline structure,” Shen said. “But once you increase the temperature of the polymer fiber, to around 340 Kelvin, then the molecular structure changes and becomes hexagonal.”

The findings were published in Science Advances in a paper titled, “High-Contrast and Reversible Polymer Thermal Regulator by Structural Phase Transition.” Collaborators included Carnegie Mellon’s Michael Bockstaller, Renkun Chen of the University of California-San Diego, Sukwon Choi of the Pennsylvania State University, Kedar Hippalgaonkar of the Agency for Science Technology and Research (Singapore), and Tengfei Luo of the University of Notre Dame.

The transformation occurs because the heat targets the molecular bonds. “The bonding of the molecules becomes pretty weak,” Shen said. “So the segments can rotate.” And once the segments rotate, the structure becomes disordered, greatly reducing its thermal conductivity. This type of transition is known as a solid-solid transition; although the polymer reaches temperatures close to its melting point, it remains a solid through the process.

When studying the polymer’s transformation, Shen concentrated his data on how its conductivity changed. He also gathered data on other phase transitions so he could compare the ratios. “When you look at all the materials we have on Earth, the conductivity change is, at most, a factor of four,” Shen says. “Here, we’ve already discovered a new material that can have a conductivity change of around ten.”

Additionally, the structural change can happen quickly, within a range of five Kelvin. It’s also reversible, which allows it to be turned on and off like a switch. It can handle much higher temperatures than other thermal regulators, remaining stable up to 560 Kelvin. It’s hard to break down, so it can survive many transitions. And since it’s heat-based, it doesn’t use as many moving parts as typical cooling methods, making it much more efficient.

While this research has been explored theoretically in the past, Shen’s work is the first time it’s been shown experimentally. Shen believes that the polymer will have real-world applications. “This control of heat flow at the nanoscale opens up new possibilities,” said Shen, “Such as developing switchable thermal devices, solid-state refrigeration, waste heat scavenging, thermal circuits, and computing.”

This work builds on previous research in Shen’s lab, where his team had developed a polymer nanofiber that was strong, lightweight, thermally conductive, electrically insulating, and bio-compatible–all at less than 100 nanometers wide.

###

For more information:

High-contrast and reversible polymer thermal regulator by structural phase transition, Science Advances, 13 Dec 2019, DOI: 10.1126/sciadv.aax3777

https://advances.sciencemag.org/content/5/12/eaax3777

Media Contact
Lisa Kulick
[email protected]
412-268-5444

Original Source

https://engineering.cmu.edu/news-events/news/2019/12/16-shen-heat-flow.html

Related Journal Article

http://dx.doi.org/10.1126/sciadv.aax3777

Tags: Biomedical/Environmental/Chemical EngineeringElectrical Engineering/ElectronicsMechanical EngineeringNanotechnology/MicromachinesSuperconductors/SemiconductorsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Increasing Nitrogen and Rainfall May Dramatically Boost Greenhouse Gas Emissions from the World’s Largest Grasslands

Increasing Nitrogen and Rainfall May Dramatically Boost Greenhouse Gas Emissions from the World’s Largest Grasslands

November 7, 2025
blank

OSU Develops Revolutionary New Material Advancing Medical Imaging Technology

November 7, 2025

Heat-Resistant Microbes Uncover Molecular Secrets Behind Nature’s Ultimate Recycling System

November 7, 2025

Innovative MOF Membrane Electrolyzer Converts Air and Flue Gas CO2 into Pure Formic Acid, Advancing Carbon Neutrality

November 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    314 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1302 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Study Identifies Improved Strategy for Timing Kidney Transplant Waitlisting

Quality Improvement Intervention Shows Promise in Preventing Deaths from Metformin-Associated Lactic Acidosis

New Model Reveals When Conservative Care or Dialysis Is Optimal for Patients with Advanced Chronic Kidney Disease

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.