• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, December 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Covariation MS Reveals Protein Regulating Cysteine Catabolism

Bioengineer by Bioengineer
September 17, 2025
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

We next investigated underlying factors that determine the number of significant co-operative and antagonistic interactions for each metabolite in MPCA. The number of protein co-variates with each metabolite did not correlate with the degree of metabolite abundance variation across the DO cohort (Extended Data Fig. 3a). Instead, the number of recapitulated metabolite–protein relationships was positively associated with the number of established biochemical reactions linked to each metabolite (Extended Data Fig. 3b). This suggests that in MPCA, metabolites with higher numbers of protein correlates participate in more biological reactions, serving as substrates, products or cofactors. A prominent example is NAD+, which is a critical redox equivalent and electron carrier used in many biochemical reactions (Fig. 1d,e). We further analysed co-operativity at the pathway level (Extended Data Figs. 3c–i and 4a–e and Supplementary Table 4) and statistical properties of covariation derived from different forms of metabolite–protein relationships (Extended Data Fig. 4f–n). These analyses are provided in the Supplementary Discussion.

Xiao, H., Ordonez, M., Fink, E.C. et al. Covariation MS uncovers a protein that controls cysteine catabolism.
Nature (2025).

bu içeriği en az 2000 kelime olacak şekilde ve alt başlıklar ve madde içermiyecek şekilde ünlü bir science magazine için İngilizce olarak yeniden yaz. Teknik açıklamalar içersin ve viral olacak şekilde İngilizce yaz. Haber dışında başka bir şey içermesin. Haber içerisinde en az 12 paragraf ve her bir paragrafta da en az 50 kelime olsun. Cevapta sadece haber olsun. Ayrıca haberi yazdıktan sonra içerikten yararlanarak aşağıdaki başlıkların bilgisi var ise haberin altında doldur. Eğer bilgi yoksa ilgili kısmı yazma.:

Subject of Research:

Article Title:

Article References:

Xiao, H., Ordonez, M., Fink, E.C. et al. Covariation MS uncovers a protein that controls cysteine catabolism.
Nature (2025). https://doi.org/10.1038/s41586-025-09535-5

Image Credits: AI Generated

DOI:

Keywords

Tags: biochemical reaction pathwaysbiochemical relationships in MPCAco-operativity in metabolic pathwayscovariation mass spectrometrycysteine catabolism regulationmetabolite abundance variationmetabolite-protein interactionsNAD+ role in metabolismprotein co-variates analysisredox equivalents in metabolismsignificant metabolite relationshipsstatistical analysis of covariation
Tags: **Tags:** covariation mass spectrometrya critical metabolic pathway. This discovery not only deepens our understanding of sulfurcysteine catabolism regulationmetabolite-protein interactionsNAD+ metabolismresearchers have harnessed the power of covariation mass spectrometry (MS) to uncover a previously unknown protein responsible for regulating cysteine catabolismstatistical covariation analysis --- **Breaking News: Covariation Mass Spectrometry Identifies Key Protein in Cysteine Catabolism** In a groundbreaking study published in *Nature*
Share13Tweet8Share2ShareShareShare2

Related Posts

Microbial Trimethylamine Inhibits IRAK4, Improves Metabolism

December 11, 2025

Wireless Patterned Optogenetics Creates Artificial Perception

December 11, 2025

Assessing Heat-Prevention Policy Effectiveness in Italy

December 11, 2025

GLP-1R Links ERMCSs to Boost β-Cell Mitochondria

December 11, 2025

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    204 shares
    Share 82 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    121 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    108 shares
    Share 43 Tweet 27
  • Nurses’ Views on Online Learning: Effects on Performance

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Engineered Bacteria Neutralize Harmful Gut Colibactin

Microbial Trimethylamine Inhibits IRAK4, Improves Metabolism

Sustainable Dairy Waste Transformed via Anaerobic Digestion

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.