• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Counterintuitive phase behavior observed in isotopic hydrogen (H2-HD-D2) alloy

Bioengineer by Bioengineer
June 3, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: LIU Xiaodi

A joint team, while exploring phase diagrams in dense H2-HD-D2 mixtures, has reported a new discovery in which they found counterintuitive effects of isotopic doping on the phase diagram of H2-HD-D2 molecular alloy.

This work was conducted by a research team at the Institute of Solid State Physics, Hefei Institutes of Physical Science collaborating with researchers from the Center for High Pressure Science & Technology Advanced Research and University of Edinburgh. It was published in PNAS on 2 June, 2020.

Molecular hydrogen forms the archetypical quantum solid. Its quantum nature is revealed by classically impossible behavior as well as by very strong isotope effects. Isotope effects between H2, D2, and HD molecules come from mass difference and the different quantum exchange effects: Fermionic H2 molecules have antisymmetric wavefunctions, while bosonic D2 molecules have symmetric wavefunctions, and HD molecules have no exchange symmetry.

To investigate how the phase diagram depends on quantum-nuclear effects, the joint team used high-pressure and low-temperature in situ Raman spectroscopy to map out the phase diagrams of H2-HD-D2 with various isotope concentrations over a wide P-T range.

When hydrogen and deuterium were mixed, they formed H2 + HD + D2 mixtures at very low pressures and room temperature.

They found that mixtures of H2, HD, and D2 behaved as an isotopic molecular alloy (ideal solution) and exhibited symmetry-breaking phase transitions between phases I and II and phase III.

In their experiment, the researchers were surprised to find that all transitions occurred at higher pressures for the alloys than for either pure H2 or D2. This ran counter to any quantum effects based on isotope mass but could be explained by quantum trapping of high-kinetic energy states by the exchange interaction.

“Since HD has an intermediate mass and prevalent component in these alloys, one would expect that with its addition phase transitions would occur at intermediate P-T regimes”, said the leading scientist of this study, “The discrepancy from the more classical understanding of molecular phase diagrams, derives from the quantum nature of the hydrogen molecules themselves, where the exchange-symmetry can in effect trap the molecules in different, higher energy states.”

“HD molecules have no exchange symmetry, at low temperature all HD molecules will be in the lowest energy state. However, pure H2 and D2 have exchange symmetry, so some of the molecules would be trapped in the higher energy states. So the trapped kinetic energy is lower in mixtures than in either pure elements, and it shifts the phase transition to higher pressure in mixtures”, said LIU Xiaodi, the first author of the paper.

This work was supported by the National Natural Science Foundation of China, the CAS President’s International Fellowship Initiative, the Science Challenge Project, the CAS Innovation Fund and the Director’s Fund of Science Island.

###

Media Contact
ZHOU Shu
[email protected]

Original Source

http://english.cas.cn/newsroom/research_news/phys/202006/t20200602_238129.shtml

Related Journal Article

http://dx.doi.org/10.1073/pnas.2001128117

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesMolecular PhysicsParticle Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

Running Quantum Dynamics on Your Laptop? Breakthrough Technique Brings Us Closer

Running Quantum Dynamics on Your Laptop? Breakthrough Technique Brings Us Closer

October 8, 2025
Creating Advanced Polymers for Next-Generation Bioelectronics

Creating Advanced Polymers for Next-Generation Bioelectronics

October 8, 2025

ACS President Reacts to 2025 Nobel Prize in Chemistry Announcement

October 8, 2025

Innovative 3D Printing Technique ‘Grows’ Ultra-Strong Materials

October 8, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1148 shares
    Share 458 Tweet 287
  • New Study Reveals the Science Behind Exercise and Weight Loss

    101 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    80 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Key Insights on Retinoblastoma and CSF Metastasis

Parabrachial Hub Governs Persistent Pain States

Family Resilience in Children with Cancer: A Study

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.