• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Cost-effective, high-capacity, and cyclable lithium-ion battery cathodes

Bioengineer by Bioengineer
May 2, 2024
in Chemistry
Reading Time: 3 mins read
0
Lithium-superrich iron oxides for cost-effective, high-capacity, and cyclable cathodes
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Charge-recharge cycling of lithium-superrich iron oxide, a cost-effective and high-capacity cathode for new-generation lithium-ion batteries, can be greatly improved by doping with readily available mineral elements.

Lithium-superrich iron oxides for cost-effective, high-capacity, and cyclable cathodes

Credit: Science Graphics. Co., Ltd.

Charge-recharge cycling of lithium-superrich iron oxide, a cost-effective and high-capacity cathode for new-generation lithium-ion batteries, can be greatly improved by doping with readily available mineral elements.

The energy capacity and charge-recharge cycling (cyclability) of lithium-iron-oxide, a cost-effective cathode material for rechargeable lithium-ion batteries, is improved by adding small amounts of abundant elements. The development, achieved by researchers at Hokkaido University, Tohoku University, and Nagoya Institute of Technology, is reported in the journal ACS Materials Letters.

Lithium-ion batteries have become indispensable in modern life, used in a multitude of applications including mobile phones, electric vehicles, and large power storage systems. A constant research effort is underway to increase their capacity, efficiency, and sustainability. A major challenge is to reduce the reliance on rare and expensive resources. One approach is to use more efficient and sustainable materials for the battery cathodes, where key electron exchange processes occur.

The researchers worked to improve the performance of cathodes based on a particular lithium-iron-oxide compound. In 2023, they reported a promising cathode material, Li5FeO4, that exhibits a high capacity using iron and oxygen redox reactions. However, its development encountered problems associated with the production of oxygen during charging-recharging cycling.

“We have now found that the cyclability could be significantly enhanced by doping small amounts of abundantly available elements such as aluminum, silicon, phosphorus, and sulfur into the cathode’s crystal structure,” says Associate Professor Hiroaki Kobayashi at the Department of Chemistry, Faculty of Science, Hokkaido University.

A crucial chemical aspect of the enhancement proved to be the formation of strong ‘covalent’ bonds between the dopant and oxygen atoms within the structure. These bonds hold atoms together when electrons are shared between the atoms, rather than the ‘ionic’ interaction between positive and negatively charged ions.

“The covalent bonding between the dopant and oxygen atoms makes the problematic release of oxygen less energetically favorable, and therefore less likely to occur,” says Kobayashi.

The researchers used X-ray absorption analysis and theoretical calculations to explore the fine details of changes in the structure of the cathode material caused by introducing different dopant elements. This allowed them to propose theoretical explanations for the improvements they observed. They also used electrochemical analysis to quantify the improvements in the cathode’s energy capacity, stability and the cycling between charging and discharging phases, showing an increase in capacity retention from 50% to 90%.

“We will continue to develop these new insights, hoping to make a significant contribution to the advances in battery technology that will be crucial if electric power is to widely replace fossil fuel use, as required by global efforts to combat climate change,” Kobayashi concludes.

The next phase of the research will include exploring the challenges and possibilities in scaling up the methods into technology ready for commercialization.



Journal

ACS Materials Letters

DOI

10.1021/acsmaterialslett.4c00268

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Toward Cost-Effective High-Energy Lithium-Ion Battery Cathodes: Covalent Bond Formation Empowers Solid-State Oxygen Redox in Antifluorite-Type Lithium-Rich Iron Oxide

Article Publication Date

22-Apr-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Warns Seasonal Freeze–Thaw Cycles Could Cause “Green” Biochar to Release Toxic Metals

New Study Warns Seasonal Freeze–Thaw Cycles Could Cause “Green” Biochar to Release Toxic Metals

September 20, 2025
blank

Gravitino Emerges as a Promising New Candidate for Dark Matter

September 19, 2025

Advancing Quantum Chemistry: Enhancing Accuracy in Key Simulation Methods

September 19, 2025

Neutrino Mixing in Colliding Neutron Stars Alters Merger Dynamics

September 19, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

TMolNet: Revolutionizing Molecular Property Prediction

NICU Families’ Stories Through Staff Perspectives

CT Scans in Kids: Cancer Risk Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.