• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Cosmic chocolate pralines: General neutron star structure revealed

Bioengineer by Bioengineer
November 15, 2022
in Chemistry
Reading Time: 3 mins read
0
Cosmic Chocolate Pralines
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

FRANKFURT. So far, little is known about the interior of neutron stars, those extremely compact objects that can form after the death of a star: the mass of our sun or even more is compressed into a sphere with the diameter of a large city. Since their discovery more than 60 years ago, scientists have been trying to decipher their structure. The greatest challenge is to simulate the extreme conditions inside neutron stars, as they can hardly be recreated on Earth in the laboratory. There are therefore many models in which various properties – from density and temperature – are described with the help of so-called equations of state. These equations attempt to describe the structure of neutron stars from the stellar surface to the inner core.

Cosmic Chocolate Pralines

Credit: Peter Kiefer & Luciano Rezzolla

FRANKFURT. So far, little is known about the interior of neutron stars, those extremely compact objects that can form after the death of a star: the mass of our sun or even more is compressed into a sphere with the diameter of a large city. Since their discovery more than 60 years ago, scientists have been trying to decipher their structure. The greatest challenge is to simulate the extreme conditions inside neutron stars, as they can hardly be recreated on Earth in the laboratory. There are therefore many models in which various properties – from density and temperature – are described with the help of so-called equations of state. These equations attempt to describe the structure of neutron stars from the stellar surface to the inner core.

Now physicists at Goethe University Frankfurt have succeeded in adding further crucial pieces to the puzzle. The working group led by Prof. Luciano Rezzolla at the Institute of Theoretical Physics developed more than a million different equations of state that satisfy the constraints set by data obtained from theoretical nuclear physics on the one hand, and by astronomical observations on the other. When evaluating the equations of state, the working group made a surprising discovery: “Light” neutron stars (with masses smaller than about 1.7 solar masses) seem to have a soft mantle and a stiff core, whereas “heavy” neutron stars (with masses larger than 1.7 solar masses) instead have a stiff mantle and a soft core. “This result is very interesting because it gives us a direct measure of how compressible the centre of neutron stars can be,” says Prof. Luciano Rezzolla, “Neutron stars apparently behave a bit like chocolate pralines: light stars resemble those chocolates that have a hazelnut in their centre surrounded by soft chocolate, whereas heavy stars can be considered more like those chocolates where a hard layer contains a soft filling.”

Crucial to this insight was the speed of sound, a study focus of Bachelor’s student Sinan Altiparmak. This quantity measure describes how fast sound waves propagate within an object and depends on how stiff or soft matter is. Here on Earth, the speed of sound is used to explore the interior of the planet and discover oil deposits.

By modelling the equations of state, the physicists were also able to uncover other previously unexplained properties of neutron stars. For example, regardless of their mass, they very probably have a radius of only 12 km. Thus, they are just as large in diameter as Goethe University’s hometown Frankfurt. Author Dr. Christian Ecker explains: “Our extensive numerical study not only allows us to make predictions for the radii and maximum masses of neutron stars, but also to set new limits on their deformability in binary systems, that is, how strongly they distort each other through their gravitational fields. These insights will become particularly important to pinpoint the unknown equation of state with future astronomical observations and detections of gravitational waves from merging stars.”

So, while the exact structure and composition of matter inside neutron stars continues to remain a mystery, the wait until its discovery can certainly be sweetened with a chocolate or two.



Journal

The Astrophysical Journal Letters

DOI

10.3847/2041-8213/ac9b2a

Method of Research

Computational simulation/modeling

Article Title

On the Sound Speed in Neutron Stars

Article Publication Date

15-Nov-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Star’s Explosion Unveils Unique Shape Just One Day After Detection

November 12, 2025
blank

Compact RNA Sensors Enable Complex Multivariable Functions

November 12, 2025

‘Hot Syrup’ Freezes Faster: Unusual Symmetry Restoration in Many-Body Localization Systems

November 12, 2025

Innovative Lightweight Polymer Film Offers Superior Corrosion Protection

November 12, 2025

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    317 shares
    Share 127 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    209 shares
    Share 84 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    141 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1306 shares
    Share 522 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Factors Influencing Georgia’s HIV Healthcare Providers’ Attitudes

Stanford Mouse Study Reveals Extreme Age Provides Protection Against Cancer

Star’s Explosion Unveils Unique Shape Just One Day After Detection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.