• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Corrupted proteins in focus: How shape gives rise to variations of fatal brain disease

Bioengineer by Bioengineer
July 13, 2022
in Biology
Reading Time: 3 mins read
0
Atomic-level view of prions.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CLEVELAND—Prion diseases are incurable, deadly neurological disorders that can affect both humans and animals–including Creutzfeldt-Jakob Disease (CJD) in people, Bovine Spongiform Encephalopathy (also known as Mad Cow Disease) and Chronic Wasting Disease found in deer.

Atomic-level view of prions.

Credit: Case Western Reserve University

CLEVELAND—Prion diseases are incurable, deadly neurological disorders that can affect both humans and animals–including Creutzfeldt-Jakob Disease (CJD) in people, Bovine Spongiform Encephalopathy (also known as Mad Cow Disease) and Chronic Wasting Disease found in deer.

Scientists have spent decades working to better understand how prions cause these diseases. But new research from the Case Western Reserve University School of Medicine and the National Institutes of Health (NIH) Rocky Mountain Laboratories brings into focus how prions might be formed and how they can result in different disease outcomes.

This collaborative research team discovered a new prion structure through revolutionary new imaging using specialized electron microscopes at the Cleveland Center for Structural and Membrane Biology Cryo-Electron Microscopy Core and the Rocky Mountain Laboratories. The new structure is of a second prion strain, providing an atomic-level view into how corrupted prion proteins self-convert and assemble.

“Prions are unusual pathogens. Different prions result in different disease lengths and symptoms in their host,” said Allison Kraus, assistant professor of pathology at the School of Medicine, who co-led the research with Byron Caughey at NIH. “This has long perplexed scientists because different diseases occur with corruption of the same protein from its original shape.”

The research was published this month in Nature Communications.

“Our study identifies the key similarities and differences in prions and how these features compare to other types of self-converting proteins,” Kraus said. “We can now begin to appreciate how those key similarities and differences shape disease outcomes of prion disease and compare the outcomes to other brain diseases.”

Prion disease occurs when prion proteins are refolded, causing a chain reaction where other prion proteins refold and accumulate in the brain, according to the NIH.

Kraus said the new prion imaging could play a key role towards understanding prion disease outcomes. 

“Neurodegenerative brain diseases are incredibly complex,” she said. “With indications that corrupted shapes do indeed occur with different prion diseases, and with further research into more prion strains, we can begin to understand how specific prion shapes relate to disease outcomes.” 

Study authors include: Kraus, Heidi Standke, Kunpeng Li, Matteo Manca and Olivia Thomas from Case Western Reserve; and Forrest Hoyt, Efrosini Artikis, Cindi Schwartz, Bryan Hansen, Andrew Hughson, Gregory Raymond, Brent Race, Gerald Baron and Caughey from NIH.

###

Case Western Reserve University is one of the country’s leading private research institutions. Located in Cleveland, we offer a unique combination of forward-thinking educational opportunities in an inspiring cultural setting. Our leading-edge faculty engage in teaching and research in a collaborative, hands-on environment. Our nationally recognized programs include arts and sciences, dental medicine, engineering, law, management, medicine, nursing and social work. About 5,800 undergraduate and 6,300 graduate students comprise our student body. Visit case.edu to see how Case Western Reserve thinks beyond the possible.

 



Journal

Nature Communications

Article Title

Cryo-EM structure of anchorless RML prion reveals variations in shared motifs between distinct strains

Article Publication Date

13-Jul-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Exploring Male Pregnancy: Insights from Seahorses

November 11, 2025
blank

Nanopores Function as Electrical Gates in Breakthrough Discovery

November 11, 2025

Impact of miR-4289-Loaded Exosomes on Stem Cells

November 11, 2025

Ovarian Transcriptome Links Inflammation to Poultry Meat Spots

November 11, 2025

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1304 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Notch Signaling Directs Monocyte Progenitors During Inflammation

Deep Learning Enhances Micro-LED Gas Sensor Identification

New Molecule Lowers Ethanol Consumption and Drinking Motivation in Mice, Revealing Sex-Specific Effects

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.