• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Cornell professors to launch NSF-funded space experiments

Bioengineer by Bioengineer
February 12, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Cornell University

For two Cornell engineering professors, the International Space Station U.S. National Laboratory is basically a high-powered microscope attached to a super-slow-motion camera, some 250 miles above the Earth.

With that in mind, Paul Steen and Michel Louge hope to learn more about the behavior of water when they send experiments up to the ISS in early 2018. Steen and Louge have received funding from the National Science Foundation (NSF) and NASA's Center for the Advancement of Science in Space (CASIS).

The NSF and CASIS, which manages the ISS national lab, solicited funding proposals last December under the heading, "Fluid Dynamics Research on the International Space Station to Benefit Life on Earth." Five funding awards, totaling $1.5 million, were announced Sept. 29.

Steen is the Maxwell M. Upson Professor of Engineering in the Robert Frederick Smith School of Chemical and Biomolecular Engineering. His research examines the dynamical stability of fluid systems, with recent focus on systems where the capillary action of surface tension influences the shape of deformable liquid/gas interfaces.

Louge is a professor in the Sibley School of Mechanical and Aerospace Engineering and a faculty fellow at the Atkinson Center for a Sustainable Future. His work focuses on gas-solid and granular flows, which incorporate fluid mechanics, heat transfer, instrumentation, particle impacts and inclined flows.

Both researchers will send experiments to the ISS to reveal details about the behavior of water that can be better seen in the absence of Earth's gravity.

"We are examining behaviors which are very difficult to measure on Earth, even with the most sophisticated instruments," Steen said. "We have basically a microscope, and a slowing-down of time, on the ISS."

Steen, an associate editor of the Nature Partner Journal Microgravity, has for a long time been involved with NASA regarding fluid physics. In his project summary, Steen says his goal is to gain a deeper insight into contact-line mobility and inertial spreading of water droplets, which is important for manufacturing and coating and forming operations. With gravity levels on the ISS at about one-millionth of terrestrial levels, he said, features of contact-line motions that are small-scale and fast on Earth become larger and slower on the ISS.

A secondary goal of Steen's project will be to expand his "photo album" of the shapes an oscillated drop of water can take. It's a project he started in 2013 with Susan Daniel, associate professor of chemical and biomolecular engineering. They started three years ago with 37 images of oscillating droplets; Steen's catalog is up to 64 images now.

"If you compare it to the periodic table, it's as if we're at the discovery of the element bromine, which occurred nearly 200 years ago," he said. "We think, with the advantages of the ISS, being able to see things smaller and faster, we should be able to get another 10 to 20 elements.

"So we should be able to get ourselves up into the late 20th century," he added with a laugh.

Louge's experiment will focus on the imbibition of water — what happens when a liquid comes into contact with a porous solid partially filled with gas, such as dry soil. In his project summary, Louge noted that imbibition is central to applications where three states of matter (liquid, gas, solid) coexist, including fuel cells, filtration, carbon dioxide sequestration, heat pipes and the wetting of soil.

Louge is hoping the numerical simulations of colleague Olivier Desjardins, associate professor of mechanical and aerospace engineering, can be verified in space, where bigger drops and longer time scales will allow him to see "all the grungy details" of imbibition.

"In the end, it will be useful for anything that has a porous medium and water," he said. "So you're talking about irrigation and agriculture, fuel cells, dam breaks, hydraulic fracturing. The imbibition of water, even if it's a tiny amount, has to be understood in all these applications."

###

Media Contact

Tom Fleischman
[email protected]
607-255-9735
@cornell

http://pressoffice.cornell.edu

Share12Tweet7Share2ShareShareShare1

Related Posts

Iain Couzin Named a “Highly Cited Researcher” for 2025

Iain Couzin Named a “Highly Cited Researcher” for 2025

November 12, 2025
Gender Variations in Medial Prefrontal Cortex Regulation

Gender Variations in Medial Prefrontal Cortex Regulation

November 12, 2025

Snail Genome Duplication Provides Insights into Evolutionary Transitions

November 12, 2025

Path-Integral Approach to Wright-Fisher Model Explained

November 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    317 shares
    Share 127 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    209 shares
    Share 84 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1306 shares
    Share 522 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Naturally Immortal Bovine Fibroblasts Provide Beef Cell Source

EZH2 and DNMT Inhibition Halts Neuroblastoma Growth

Cytosolic Acetyl-CoA Regulates Mitophagy Signaling

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.