• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Corn yield modeling towards sustainable agriculture

Bioengineer by Bioengineer
December 14, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Image granted by Laila Puntel.

With an innovative modeling approach, researchers set out to examine corn and soybean yields and optimal nitrogen (N) fertilizer rates. In their study, recently published in Frontiers in Plant Science, they uses a 16-year long-term dataset from central Iowa, USA, with a state-of-the-art simulator that modeled corn and soybean yields, improving predictions of optimal N fertilizer rates for corn. This has global relevance for food security and sustainable agricultural practices in light of future climate change scenarios.

Corn, also known as maize, is one of the top three staple crops farmed globally with global production predicted to rise from 720.8 million tons in 2015 to 872.9 by 2030, according to the Food and Agriculture Organization. Corn also requires large nutrient supplements in the form of fertilizer due to its fast-growing, nitrogen hungry characteristics. And global demand is growing.

"A huge challenge in agriculture is predicting the optimal N fertilizer rates which, if fine-tuned, can reduce N losses and increase profits", explains Laila Puntel, a graduate student and research assistant in Crop Production and Physiology at Iowa State University, USA, and lead author of the study. The ultimate goal is accurately predicting the economic optimum nitrogen rate (EONR), the amount of nitrogen fertilizer that will provide the maximum economic return to nitrogen added. This is notoriously complex to calculate due to factors including the soil-plant-atmosphere system, uncertainty in weather and fluctuations in crop and fertilizer prices.

To solve this conundrum, many technologies and approaches have been developed to assess the state of agricultural land. These include real-time remote sensing, aerial imaging, soil mapping and nitrate testing, crop canopy sensing and measuring chlorophyll levels. Web applications have also been developed including digital soil and weather databases. However, no single technology can make predictions of yield or optimal N fertilizer rates with the required accuracy or precision.

Puntel and her international co-authors tackled this problem head on, designing an inter-disciplinary approach using field and experimental data. These data were used to test the Agricultural Production Systems sIMulator (APSIM), an internationally recognized highly advanced simulator of agricultural systems.

"We found that long-term experimental data incorporating agricultural, economic and environmental factors are valuable in testing and refining the APSIM model predictions, leading to more accurate predictions of EONR" says co-author Dr. Sotirios Archontoulis, Assistant Professor in the Department of Agronomy at Iowa State University, USA.

Archontoulis continues "The study results show that predictions of N fertilizer rates for corn are more accurate when inter-annual variability is taken into account. Site-specific datasets on variables such as landscape factors, weather and prices for fertilizers and crops are also key to achieving the best results."

The study identifies five potential applications where the model could assist N management, ranging from simulation of N dynamics to climate change impact on optimal N requirement. It also found that optimum N rate was high for corn production alone, but could be reduced by rotating the corn with soybean.

The study is timely as environmental concerns are very real and increasing. Excess nutrients such as nitrogen and phosphorus enter the water cycle via surface run-off, leaching or denitrification. This contaminates water systems and can also promote algal growth in water systems which can be toxic, damaging fisheries.

"The study shows that using a combination of methods including process-based modeling, existing N rates and field data really can fine-tune N rate guidance for corn. Ultimately, reducing the use of nitrogen fertilizer is a win-win for the agricultural business and the environment." concludes Puntel.

###

This work was part of the Agriculture and Food Research Initiative Hatch project No. 1004346 and was also partially supported by the Plant Science Institute, and the Brown Graduate Fellowship program of Iowa State University.

Citation: Puntel LA, Sawyer JE, Barker DW, Dietzel R, Poffenbarger H, Castellano MJ, Moore KJ, Thorburn P and Archontoulis SV (2016) Modeling Long-Term Corn Yield Response to Nitrogen Rate and Crop Rotation. Front. Plant Sci. 7:1630. doi: 10.3389/fpls.2016.01630

http://journal.frontiersin.org/article/10.3389/fpls.2016.01630/full

Media Contact

Monica Favre
[email protected]
0041-215-101-704
@frontiersin

http://www.frontiersin.org

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Insights on Eosinophilic Granulomatosis with Polyangiitis: A Podcast

November 1, 2025
blank

Boosting Lettuce Yields with Steel Slag Compost Teas

November 1, 2025

Comparing Immune Responses: Rituximab vs. Obinutuzumab in Follicular Lymphoma

November 1, 2025

β-Hydroxybutyrate Protects Against Early Diabetic Kidney Disease

November 1, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1295 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Insights on Eosinophilic Granulomatosis with Polyangiitis: A Podcast

Boosting Lettuce Yields with Steel Slag Compost Teas

Comparing Immune Responses: Rituximab vs. Obinutuzumab in Follicular Lymphoma

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.