• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Coral genomes reveal how populations rebound after environmental catastrophes

Bioengineer by Bioengineer
November 17, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New genome-sequence data show that Caribbean corals that have survived mass-extinction events caused by environmental change can rebound and expand their populations. An international team of researchers, led by scientists at Penn State University, sequenced the genomes of three species of corals in the genus Orbicella and used the data to model the population histories of these corals over the past several million years. Despite massive reductions in the coral populations following the onset of glaciation in the Northern Hemisphere between 1 and 2 million years ago — an event that caused the extinction of many other Caribbean coral species — these Orbicella coral populations rebounded and expanded into new habitats opened by the mass-extinction event.

"Corals are extremely ecologically and economically important, so understanding how their populations responded to environmental change historically is crucial for current conservation efforts," said Mónica Medina, associate professor of biology at Penn State and one of the lead authors of the research. "Our study of living corals confirms fossil evidence that suggested that coral populations can recover after environmental disasters and further suggests that current reef deterioration can be reversed if environmental stresses can be reduced."

The international research team includes scientists from institutions the United States, Australia, Mexico, and Japan. A paper describing the research appears online November 17, 2016 in the journal, Current Biology.

The researchers sequenced the genomes of the three surviving Caribbean Orbicella species — O. annularis, O. faveolata, and O. franksi. The Orbicella corals have a rich fossil record that shows an increase in species diversity about 2.5 to 3.5 million years ago, followed by a massive extinction event that wiped out half of the species between 1 and 2 million years ago. All but three of the remaining species went extinct over the next million years. The team used their new genomic data to reconstruct the population histories of the three modern Orbicella species over this time period, filling in gaps in the fossil record and showing that corals can recover after environmental catastrophes.

"The wealth of genomic data allowed us to formally test hypotheses of coral population size changes, recapitulating observations from the fossil and environmental record," said Michael DeGiorgio, assistant professor of biology at Penn State and one of the lead authors of the research. "Our study is a textbook example of the power and the necessity of multidisciplinary teams of conservation, evolutionary, and computational biologists coming together to address important biological questions that would have been otherwise difficult to tackle."

The researchers also showed that the more recent extinction of another shallow-water Orbicella species — the organ-pipe coral, O. nancyi — allowed the modern species to expand their habitats into the territory vacated by the organ-pipe coral. Understanding these population changes in relation to environmental changes over time will allow the scientists to better analyze variation in modern corals and their potential to adapt and survive climate change.

###

In addition to Medina and DeGiorgio, the research team includes Carlos Prada, Bishoy Hanna, and Roberto Iglesias-Prieto at Penn State; Ann F. Budd at the University of Iowa; Cheryl Woodley from the U.S. National Oceanic and Atmospheric Administration (NOAA); Jeremy Schmutz and Jane Grimwood at Hudson Alpha Institute of Biotechnology in Huntsville, Alabama; John M. Pandolfi at the University of Queensland in Brisbane, Australia; Don Levitan at Florida State University; Kenneth G. Johnson at the Natural History Museum in London, UK; Hiroaki Kitano at the Systems Biology Institute in Tokyo, Japan; and Nancy Knowlton at the National Museum of Natural History, Smithsonian Institute in Washington D.C.

The research is funded by the Department of Biology at Penn State, the U.S. National Science Foundation, the NOAA Coral Reef Conservation Program, Hudson Alpha, the Smithsonian Tropical Research Institute, and the Canon Foundation.

CONTACT

Monica Medina: [email protected], (+1) 814-867-2958

Michael DeGiorgio: [email protected], (+1) (814) 867-5366

Barbara Kennedy (PIO): [email protected], (+1) 814-863-4682

Media Contact

Barbara K. Kennedy
[email protected]
814-863-4682
@penn_state

http://live.psu.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

3D-Printed Scaffolds Advance Glioblastoma Drug Screening

October 26, 2025

Evidence-Based Model for Public Health Nursing in Japan

October 25, 2025

Intrahepatic Cholangiocarcinoma: Key Updates from Guidelines

October 25, 2025

Investigating Rheum wittrockii Seed Surfaces in Kazakhstan

October 25, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1282 shares
    Share 512 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    309 shares
    Share 124 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    193 shares
    Share 77 Tweet 48
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

3D-Printed Scaffolds Advance Glioblastoma Drug Screening

Evidence-Based Model for Public Health Nursing in Japan

Intrahepatic Cholangiocarcinoma: Key Updates from Guidelines

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.