• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Copying made easy

Bioengineer by Bioengineer
March 12, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A universal isothermal DNA amplification method

Whether revealing a perpetrator with DNA evidence, diagnosing a pathogen, classifying a paleontological discovery, or determining paternity, the duplication of nucleic acids (amplification) is indispensable. In the journal Angewandte Chemie, scientists have now introduced a new, very simple, yet highly sensitive and reliable method that avoids the usual heating and cooling steps, as well as complicated instruments. The reagents can be freeze-dried, allowing this universal method to be used outside of the laboratory.

The most commonly used amplification method is the polymerase chain reaction (PCR), which is based on the repetition of multiple thermal cycles in special instruments that have a high demand for power. It is difficult to perform outside of a laboratory, at a patient’s bedside or in a remote location, for example. Alternative methods without thermal cycles are often complicated or not sensitive enough, require expensive reagents, or are not broadly applicable.

Researchers working with Bin-Cheng Yin and Bang-Ce Ye at East China University of Science & Technology, Shanghai, China, have now developed a new, inexpensive method: Called the Cas9n-based amplification reaction (Cas9nAR), it consists of a single step in homogeneous solution, and takes place at a constant temperature of 37 °C.

In this approach the researchers use components from the “immune system” of bacteria. When bacteria are infected by a virus, for example, they cut up the foreign genetic material into little bits and introduce them into specific areas of their own genome. In the case of a subsequent infection, the bacterium’s RNA strands “recognize” these sequences and direct special “genetic scissors” to cut up the foreign DNA. These tools have also been employed in modern genetic engineering.

Yin, Ye, and their co-workers have altered the genetic scissor known as Cas9 so that it no longer completely cuts through DNA. Instead, it cuts through only one strand, introducing a “nick”. This type of enzyme is called a “nickase”. Like in the bacterial system, Cas9 nickase binds to an RNA strand, which determines the location of the nick. This RNA can be made so that it recognizes a DNA sequence characteristic of a pathogen, for example. The Cas9 nickase then nicks the immediately adjacent DNA.

For the new technique, the researchers produced two different Cas9 nickase RNA complexes, which nick the DNA in two different places. A polymerase commonly used in PCR (exo(?) Klenow polymerase) complements the cut strand starting at the first nick, setting the old strand free, piece by piece, until it reaches the second nick. The newly completed DNA is repeatedly nicked and complemented by the nickase complex. The short single strands this process releases become the starting point for further amplification in a second cycle. In addition to the nickase complex and the polymerase, the only things required are two suitable primers as starting points for the copies.

Tests with a fragment of bacterial genomic DNA demonstrated that the target sequence was precisely recognized and amplified. In a volume of 20 μl, it was possible to detect a single molecule. Differences of a single nucleotide within a gene could be detected with high specificity.

###

About the Author

Dr Bang-Ce Ye is a professor at the East China University of Science and Technology in Shanghai. His research focuses on analytical biotechnology and engineering biology, being devoted to the development of innovative methods or tools to apply in clinical diagnosis, environmental monitoring, synthetic biology, etc.

mailto:[email protected]

Media Contact
Mario Mueller
[email protected]
http://dx.doi.org/10.1002/anie.201901292

Tags: BiochemistryChemistry/Physics/Materials SciencesDiagnosticsGenes
Share13Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.