• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, December 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Converting scar tissue to heart muscle after a heart attack

Bioengineer by Bioengineer
September 6, 2025
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from the University of Tsukuba demonstrate the direct conversion of scar tissue cells to heart muscle cells in mice after a heart attack

Tsukuba, Japan – It is estimated that during a heart attack, one billion cells in the heart are lost. In the wake of the heart attack, the lost tissue is replaced by scar tissue, which can lead to heart failure, arrhythmia and death. In a new study, researchers from the University of Tsukuba have shown how cells in the scar tissue can be converted to heart muscle cells, effectively regenerating the injured heart.

The injured heart of humans and rodents alike does not have the capacity to regenerate after injury. Therefore, the only way for the heart to heal the wound is to build a scar tissue in the injured area. A longstanding goal in the field has been to find a way to reprogram fibroblasts, cells that produce the connective tissue in a scar, to cardiomyocytes, the working heart muscle cells. By doing so, the lost heart muscle cells could be replaced, effectively preventing the heart from going into heart failure, a heart muscle weakness that can lead to death.

Previous studies have shown that cardiomyocytes appear to be formed by directly injecting a harmless virus carrying a set of cardiac transcription factors, proteins that drive the expression of genes that heart muscle cells need for their development and function, into the heart of rodents after a heart attack. However, the origin and functional significance of these newly formed heart muscle cells has not unequivocally been determined yet.

“Direct cardiac reprogramming holds great potential for cardiac regeneration and the treatment of myocardial infarction,” says lead author of the study Professor Masaki Ieda. “However, when transcription factors are introduced, apparent cardiomyocytes may be formed either by converting fibroblasts to new cardiomyocytes or by fusing fibroblasts with existing cardiomyocytes. The difference is that only the former process, which we call ‘direct reprogramming’, significantly contributes to regeneration. In this study, our goal was to determine how new cardiomyocytes are formed when cardiac transcription factors are introduced after myocardial infarction.”

To achieve their goal, the researchers first generated mice in which all cells emitted red fluorescence. However, the mice were modified in a way that the fibroblasts emitted green fluorescence after treatment with the drug tamoxifen. As a result, when looking at the heart after treatment with tamoxifen, cells that emitted both red and green fluorescence indicated that cell fusion between fibroblasts and cardiomyocytes had happened. Conversely, the presence of green fluorescence indicated that direct reprogramming of fibroblasts to cardiomyocytes had occurred.

“These are striking results that show that fibroblasts can be directly reprogrammed to cardiomyocytes. Our findings demonstrate the exciting potential of direct reprograming as a strategy for cardiac regeneration after myocardial infarction,” says Professor Ieda.

###

The article, “Overexpression of Gata4, Mef2c, and Tbx5 Generates Induced Cardiomyocytes via Direct Reprogramming and Rare Fusion in the Heart” was published in Circulation at DOI: 10.1161/CIRCULATIONAHA.120.052799

Media Contact
Naoko Yamashina
[email protected]

Related Journal Article

http://dx.doi.org/10.1161/CIRCULATIONAHA.120.052799

Tags: BiologyCardiologyCell BiologyMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Key Risk Factors for Type 1 Diabetes Hypoglycemia

December 25, 2025

Global Study Reveals Financial Strain in CKD Patients

December 25, 2025

Impact of Diet and Sex on Binge Eating in Mice

December 25, 2025

Genes, Environment Shape Weight Gain Across Lifespan

December 25, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tailoring Cellular Structures for Precise Nonlinear Mechanics

Key Risk Factors for Type 1 Diabetes Hypoglycemia

Global Study Reveals Financial Strain in CKD Patients

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.