• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Controlling electrons in time and space

Bioengineer by Bioengineer
November 15, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: FAU Erlangen-Nürnberg

In an electron microscope, electrons are emitted by pointy metal tips, that way the can be steered and controlled with high precision. Recently, such metal tips have also been used as high precision electron sources for generating x-rays. A team of researchers at TU Wien (Vienna), together with colleagues from the FAU Erlangen-Nürnberg (Germany), have developed a method of controlling electron emission with higher precision than ever before. With the help of two different laser pulses it is now possible to switch the flow of electrons on and off on extremely short time scales.

It's Just the Tip of the Needle

"The basic idea resembles a lightning rod", says Christoph Lemell (TU Wien). "The electrical field around a needle is always strongest right at the tip. That's why the lightning always strikes the tip of a rod, and for the same reason, electrons leave a needle right at the tip."

Extremely pointy needles can be fabricated with the methods of modern nanotechnology. Their tip is just a few nanometres wide, so the point at which the electrons are emitted is known with very high accuracy. In addition to that, it is also important to control at which point in time the electrons are emitted.

This kind of temporal control has now become possible, using a new approach: "Two different laser pulses are fired at the metal tip", explains Florian Libisch (TU Wien). The colours of these two lasers are chosen such that the photons of one laser have exactly twice the energy of the other laser's photons. Also, it is important to ensure that both light waves oscillate in perfect synchronicity.

With the help of computer simulations, the team from TU Wien was able to predict that a small time delay between the two laser pulses can serve as a "switch" for electron emission. This prediction has now been confirmed by experiments performed by Professor Peter Hommelhoff's research group at FAU Erlangen-Nürnberg. Based on these experiments, it is now possible to understand the process in detail.

Absorbing Photons

When a laser pulse is fired at the metal tip, its electrical field can rip electrons out of the metal – that is a well-known phenomenon. The new idea is that a combination of two different lasers can be used to control the emission of the electrons on a femtosecond time scale.

There are different ways an electron can gain enough energy to leave the metal tip: It can absorb one photon from the high-energy laser and two photons from the low-energy laser or four electrons from the low-energy laser. Both mechanisms lead to the same result. "Much like a particle in a double slit experiment, which travels on two different paths at the same time, the electron can take part in two different processes at the same time", says Professor Joachim Burgdörfer (TU Wien). "Nature does not have to pick one the two possibilities – both are equally real and interfere which each other."

By carefully tuning the two lasers, it is possible to control whether the two quantum physical processes amplify each other, which leads to an increased emission of electrons, or whether they cancel each other, which means that hardly any electrons are emitted at all. This is a simple and effective way of controlling electron emission.

It is not just a new method of performing experiments with high energy electrons, the new technology should open the door to controlled x-ray generation. "Innovative x-ray sources are already being built, using arrays of narrow metal tips as electron sources", says Lemell. "With our new method, these nano tips could be triggered in exactly the right way so that coherent x-ray radiation is produced."

###

Further Information:
Prof. Joachim Burgdörfer
Institute for Theoretical Physics
TU Wien
Wiedner Hauptstraße 8-10, 1040 Vienna
T: +43-1-58801-13610
[email protected]

Dr. Florian Libisch
Institute for Theoretical Physics
TU Wien
Wiedner Hauptstraße 8-10, 1040 Vienna
T: +43-1-58801-13608
[email protected]

Media Contact

Florian Aigner
[email protected]
43-158-801-41027
@tuvienna

http://www.tuwien.ac.at/tu_vienna/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Daily Fluctuations in Human Plasma Proteins Revealed

October 12, 2025

Delirium in Long-Term Care: A Study Overview

October 12, 2025

Link Between Gut Microbiota and MASLD Revealed

October 12, 2025

Link Between Gut Microbiota and MASLD Revealed

October 12, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1221 shares
    Share 488 Tweet 305
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Daily Fluctuations in Human Plasma Proteins Revealed

Delirium in Long-Term Care: A Study Overview

Link Between Gut Microbiota and MASLD Revealed

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.