• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Concrete structure’s lifespan extended by a carbon textile

Bioengineer by Bioengineer
October 26, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Construction costs reduced by 40%, while improving fire resistance

IMAGE

Credit: Korea Institute of Civil Engineering and Building Technology (KICT)

The Korea Institute of Civil Engineering and Building Technology (KICT) has announced the development of an effective structural strengthening method using a noncombustible carbon textile grid and cement mortar, which can double the load-bearing capacities of structurally deficient concrete structures and increase their usable lifespan by threefold.

More than 90% of infrastructures in South Korea, such as bridges and tunnels, as well as residential buildings were initially constructed out of concrete. For deteriorated or structurally deficient concrete structures in need of structural strengthening, carbon fiber sheets are typically applied to the surface of the concrete structure using organic adhesives. However, organic adhesives are susceptible to fire and cannot be applied to structures with wet surfaces. These carbon fiber sheets may detach and fall from the structure if they are exposed to moisture.

A research team in KICT, led by Dr. Hyeong-Yeol Kim, has developed an effective as well as efficient strengthening method for deteriorated concrete structures. With the developed method, thin precast textile reinforced mortar (TRM) panels, which are made of a carbon textile grid and a thin layer of cement mortar, are used. Furthermore, the TRM strengthening method can be applied in the form of cast-in-place construction. Employing KICT’s method, 20 mm-thick TRM panels are attached to the surface of the existing structure, and then the space between the existing structure and the panels is filled with cement grout, with the cement grout serving as the adhesive.

Both the carbon textile and cement mortar are noncombustible materials that have a high resistance to fire, meaning that they can be effectively used to strengthen concrete buildings that may be exposed to fire hazards. The construction method can also be applied to wet surfaces as well as in the winter, and the panels do not fall off even in the event of water ingress. Additionally, unlike steel reinforcing bars, the carbon textile does not corrode, and thus it can be effectively used to strengthen highway facilities and parking buildings, where deicing agents are often used, as well as to strengthen offshore concrete structures that are exposed to a chloride-rich environment.

A failure test conducted in KICT indicates that the failure load of concrete structures strengthened with the TRC panel increased by at least 1.5 times compared to that of an unstrengthened structure. Furthermore, the chloride resistance of the TRM panel has been evaluated in order to assess its service life in a chloride-rich environment. The durability test and analysis of the TRM panel indicates that the lifespan of the panel is more than 100 years. This increase can be attributed to the cement mortar, developed by KICT, which contains 50% ground granulated blast furnace slag, an industrial byproduct generated at ironworks. The cement mortar, which has a higher fire resistance than conventional cement mortar, is also advantageous because its cost is half that of conventional mortar. In terms of economical efficiency, the newly developed method can reduce construction costs by about 40% compared to existing carbon sheet attachment methods.

The newly developed strengthening method uses thin TRM panels that are very versatile and can be used as building facades, repair and strengthening materials, and in other applications. In the future, if the panels can be fabricated with thermal insulators, it is expected that they will replace building insulation materials that are susceptible to fires.

Dr. Kim said, “For easier production and shipping, the TRM panels are manufactured in a relatively small size of 1 m by 2 m and must be connected at the construction site. A method for effectively connecting the panels is currently being developed, and performance tests of the method will be conducted by the end of 2020.”

###

The Korea Institute of Civil Engineering and Building Technology (KICT) is a government sponsored research institute established to contribute to the development of Korea’s construction industry and national economic growth by developing source and practical technology in the fields of construction and national land management.

This research project is funded by the Ministry of Science and ICT (MSIT) (FY 2018-2020). The outcomes of this project were published in the international journal Materials in September 2020, and the developed strengthening technology was registered at the European Patent Office (EP 3 486 403 B1) in August 2020.

– Journal Paper

Strengthening of Concrete Element with Precast Textile Reinforced Concrete Panel and Grouting Material. Published date: September 1, 2020.

Materials 2020, 13(17), 3856; https://doi.org/10.3390/ma13173856

– Patent

Concrete Structure Reinforcement Method Using an Embedded Grid, and Related Repairing and Strengthening Method. European Patent Office: Publication No. EP3486403B1. Published date: Aug. 20, 2020.

Media Contact
Ahra, Cho
[email protected]

Related Journal Article

http://dx.doi.org/10.3390/ma13173856

Tags: Chemistry/Physics/Materials SciencesCivil EngineeringTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Innovative Protective Coating for Spacecraft in Development by Engineers

October 20, 2025
blank

Scientists Uncover Life’s Building Blocks in Ice Surrounding a Forming Star in Nearby Galaxy

October 20, 2025

Copper-Catalyzed Asymmetric Cross-Coupling with Reactive Radicals

October 20, 2025

The Quantum Doorway Puzzle: Electrons Struggling to Find Their Exit

October 20, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1269 shares
    Share 507 Tweet 317
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    302 shares
    Share 121 Tweet 76
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    129 shares
    Share 52 Tweet 32
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    125 shares
    Share 50 Tweet 31

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Timing of Estrogen Therapy Initiation in Women: Why It Matters

Oral vs. Transdermal Hormone Therapy: Understanding the Different Mental Health Risks

Exploring the Link Between Hormone Therapy and Autoimmune Disease Risk

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.