• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Computers learn to understand humans better by modelling them

Bioengineer by Bioengineer
May 3, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Computers are able to learn to explain the behavior of individuals by tracking their glances and movements.

Researchers from Aalto University, University of Birmingham and University of Oslo present results paving the way for computers to learn psychologically plausible models of individuals simply by observing them. In newly published conference article, the researchers showed that just by observing how long a user takes to click menu items, one can infer a model that reproduces similar behavior and accurately estimates some characteristics of that user's visual system, such as fixation durations.

Despite significant breakthroughs in artificial intelligence, it has been notoriously hard for computers to understand why a user behaves the way she does. Cognitive models that describe individual capabilities, as well as goals, can much better explain and hence be able to predict individual behavior also in new circumstances. However, learning these models from the practically available indirect data has been out of reach.

"The benefit of our approach is that much smaller amount of data is needed than for 'black box' methods. Previous methods for performing this type of tuning have either required extensive manual labor, or a large amount of very accurate observation data, which has limited the applicability of these models until now", Doctoral student Antti Kangasrääsiö from Aalto University explains.

The method is based on Approximate Bayesian Computation (ABC), which is a machine learning method that has been developed to infer very complex models from observations, with uses in climate sciences and epidemiology among others. It paves the way for automatic inference of complex models of human behavior from naturalistic observations. This could be useful in human-robot interaction, or in assessing individual capabilities automatically, for example detecting symptoms of cognitive decline.

"We will be able to infer a model of a person that also simulates how that person learns to act in totally new circumstances," Professor of Machine Learning at Aalto University Samuel Kaski says. "We're excited about the prospects of this work in the field of intelligent user interfaces," Antti Oulasvirta Professor of User Interfaces from Aalto University says.

"In the future, the computer will be able to understand humans in a somewhat similar manner as humans understand each other. It can then much better predict not only the benefits of a potential change but also its individual costs to an individual, a capability that adaptive interfaces have lacked", he continues.

###

The results will be presented at the world's largest computer-human interaction conference CHI in Denver, USA, in May 2017. The article is available in preprint: https://arxiv.org/abs/1612.00653

More information:

Doctoral student Antti Kangasrääsiö
Aalto University
tel. +358 50 517 1301
[email protected]

Professor Antti Oulasvirta
Aalto University
tel. +358 50 384 1561
[email protected]

Professor Samuel Kaski
Aalto University
tel. +358 50 305 8694
[email protected]

Media Contact

Niina Nevamäki
[email protected]
358-504-630-150
@aaltouniversity

http://www.aalto.fi/en/

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Uncovering In-Utero Diagnosis of Ciliary Dyskinesia: Two Case Studies

Uncovering In-Utero Diagnosis of Ciliary Dyskinesia: Two Case Studies

August 24, 2025
blank

Breast Cancer Recurrence: Insights from Addis Ababa Study

August 24, 2025

Discovering Maize Height Traits Under Water Conditions

August 24, 2025

Unlocking High-Yield Rice Cultivars Through Multivariate Analysis

August 24, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    120 shares
    Share 48 Tweet 30
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Uncovering In-Utero Diagnosis of Ciliary Dyskinesia: Two Case Studies

Breast Cancer Recurrence: Insights from Addis Ababa Study

Discovering Maize Height Traits Under Water Conditions

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.