• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Computer model unravels knotty problems in DNA

Bioengineer by Bioengineer
October 4, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Mariel Vazquez/UC Davis

If you've ever tried to untangle a pair of earbuds, you'll understand how loops and cords can get twisted up. DNA can get tangled in the same way, and in some cases, has to be cut and reconnected to resolve the knots. Now a team of mathematicians, biologists and computer scientists has unraveled how E. coli bacteria can unlink tangled DNA by a local reconnection process. The math behind the research, recently published in Scientific Reports, could have implications far beyond biology.

E. coli bacteria can cause intestinal disease, but they are also laboratory workhorses. E. coli's genome is a single circle of double-stranded DNA. Before an E. coli cell divides, that circle is copied. Opening up the double helix to copy it throws twisting strains elsewhere down the molecule — just as uncoiling a cord in one place will make it over-coil somewhere else. The process results in two twisted loops of DNA that pass through each other like a "magic rings" trick.

To separate the rings, E. coli uses an enzyme called topoisomerase IV, which precisely cuts a DNA segment, allows the loops to pass through the break and then reseals the break. Because topoisomerase IV is so important to bacteria, it's a tempting target for antibiotics such as ciprofloxacin. But when topoisomerase IV is absent, another enzyme complex can step in to carry out this unlinking, although less efficiently. This complex introduces two breaks and unlinks by reconnecting the four loose ends.

"There are other ways to unlink the rings, but how do they do it?" said Mariel Vazquez, professor of mathematics and of microbiology and molecular genetics at the University of California, Davis.

One pathway, Vazquez said, is that the reconnection enzymes remove one link at a time until they get to zero. That solution was favored by the biologists.

But mathematicians look at the problem slightly differently. They understand the DNA as a flexible curve in three-dimensional space. Certain points on the curve can be broken and reconnected. To a mathematician, there are many potential routes for reconnection processes to work — including some where the number of links actually goes up before going back down.

"These are all the same to a mathematician, but not to a biologist," Vazquez said. To determine the most likely route and resolve the problem, they turned to computational modeling.

Vazquez and colleagues developed computer software with DNA represented as flexible chains to model the possible locations where reconnection enzymes could cut and reconnect the chains. Overall, they modeled millions of configurations representing 881 different topologies, or mathematical shapes, and identified hundreds of minimal pathways to get two DNA circles linked in up to nine places down to two separate circles.

The computer model confirmed the biologists' hunch: Undoing one link at a time is the preferred route to separate the circles of DNA.

The results could have implications far beyond DNA biology, Vazquez said. There are other examples in nature of objects that collide, break and reconnect — like the dynamics of linked fluid vortices, or the patterns formed by smoke rings, for example. When solar flares are ejected from the sun, powerful magnetic field lines cross and reconnect.

"The math is not DNA specific, and the computation can be adapted," Vazquez said.

###

Co-authors on the paper are: at UC Davis, Robert Stolz and Michelle Flanner; Masaaki Yoshida and Koya Shimokawa, Saitama University, Japan; Reuben Brasher, Microsoft, San Francisco; Kai Ishihara, Yamaguchi University, Japan; and David Sherratt, University of Oxford, U.K. The work at UC Davis was supported by the National Science Foundation, National Institutes of Health, Japan Society for the Promotion of Science and The Wellcome Trust.

Media Contact

Andy Fell
[email protected]
530-752-4533
@ucdavisnews

http://www.ucdavis.edu

Original Source

https://www.ucdavis.edu/news/knotty-problems-dna http://dx.doi.org/10.1038/s41598-017-12172-2

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Scientists Uncover New ‘Hook’ Mechanism in Motor Proteins That Ensures Precise Neuronal Cargo Transport

November 6, 2025
Three Newly Discovered Toad Species Bypass Tadpole Stage, Give Birth to Live Toadlets

Three Newly Discovered Toad Species Bypass Tadpole Stage, Give Birth to Live Toadlets

November 6, 2025

New Evolutionary Classification of Rare CRISPR–Cas Variants

November 6, 2025

European Research Council Awards €10M Synergy Grant to RODIN Project Exploring Cells as Architects of Next-Generation Biomaterials

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1300 shares
    Share 519 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Chronic Disease Burdens NICU Families: Outcomes, Impact

AI Transformer Enhances Clinical Respiratory Disease Analysis

CABI Scientists Propose Accidentally Introduced Parasitoid as Potential Savior Against Box Tree Ecological Extinction

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.