• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Computational model of a human kinase may provide insights for cancer treatment

Bioengineer by Bioengineer
April 3, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Kimberly Sabsay

Researchers have developed a computational model for human MEK1, a protein with potential as a drug target for a variety of human cancers.

The initiation and progression of cancer cells occur when molecular signals involved in cellular proliferation go awry. MEK1 plays an essential role in signaling within both healthy and cancer cells. While much is known about the key role of MEK1 in such signaling events, scientists still don’t know the structural features of MEK1 that lead to its activation in those events.

As reported in the Journal of Chemical Information and Modeling, a group of researchers at Cal Poly San Luis Obispo led by Ashley McDonald and collaborator Javin Oza have developed computational models for the structure of the human MEK1 enzyme.

“Since we don’t know the structure of MEK1, we identified other proteins that had similar features and mechanisms of action,” said McDonald. “Using those structures as templates, we could construct models of MEK1, and then validate those models against key characteristics identified by our biochemist collaborators.”

Biochemical characterization of proteins like MEK1 remains particularly challenging because they undergo modifications called phosphorylation, which can significantly change the protein’s structure and function. In the case of MEK1, phosphorylation activates the enzyme and propagates the signal for cellular proliferation.

“Our gap in understanding the biochemistry of phosphorylated enzymes like MEK1 is in part due to technical challenges in obtaining useful quantities of pure, active enzyme,” said Oza. “Computational modeling has allowed us to bridge this gap and has provided insights into what MEK1 may look like inside of a cancer cell.”

These insights into the structure of MEK1 open the door to the development of new classes of inhibitors that could have potential as cancer therapeutics.

“This research shows that there’s great promise for combining computational and experimental science to provide unique insights into problems that are hard to study,” said McDonald.

With models of active MEK1 now available, scientists can follow up with experimental methods to discover how the protein’s structure governs its function. The combination of computational modeling and biochemical characterization of MEK1 and enzymes like it has the potential to provide new insights into drug development for tumor-specific therapeutics.

###

This work is published in the “Women in Computational Chemistry” special issue of the Journal of Chemical Information and Modeling. Cal Poly is a primarily undergraduate university, and the research was conducted primarily by female undergraduate students.

Read the paper in the Journal of Chemical Information and Modeling.

Media Contact
Ashley McDonald
[email protected]

Related Journal Article

http://dx.doi.org/10.1021/acs.jcim.8b00989

Tags: BiochemistryBiomechanics/BiophysicscancerChemistry/Physics/Materials Sciences
Share12Tweet7Share2ShareShareShare1

Related Posts

Electroactive Ferrocene Enables Shuttle-Free Aqueous Zinc–Iodine Cells

Electroactive Ferrocene Enables Shuttle-Free Aqueous Zinc–Iodine Cells

November 6, 2025
Exploring 3D Chaotic Microcavities with X-Ray Vision

Exploring 3D Chaotic Microcavities with X-Ray Vision

November 6, 2025

MIT Physicists Uncover Crucial Evidence of Unconventional Superconductivity in Magic-Angle Graphene

November 6, 2025

UVA Engineering Polymer Scientist Honored with American Physical Society’s John H. Dillon Medal

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1301 shares
    Share 520 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phospholipid Scramblases Drive Tumor Growth Via PS

Estrogen Receptor Protects Hippocampal Neurons from Amyloid β

Rice University and Houston Methodist Team Up to Explore Brain-Implant Interface with Support from Dunn Foundation Grant

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.