• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Comprehensive transcriptional atlas of human adenomyosis deciphered by the integration of single-cell RNA-sequencing and spatial transcriptomics

Bioengineer by Bioengineer
May 30, 2024
in Biology
Reading Time: 2 mins read
0
The cellular landscape of adenomyosis
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Adenomyosis is a poorly understood gynecological disorder with limited treatment options. The study employed single-cell RNA sequencing and spatial transcriptomics to map transcriptional alterations across different regions of the uterus in adenomyosis patients and controls. It highlights unique epithelial and stromal subpopulations and aberrant signaling pathways involved in adenomyosis, offering potential targets for precise diagnostics and therapeutics.

The cellular landscape of adenomyosis

Credit: Tao Chen, Yiliang Xu, Xiaocui Xu, Jianzhang Wang, Zhiruo Qiu, Yayuan Yu, Xiaohong Jiang, Wanqi Shao, Dandan Bai, Mingzhu Wang, Shuyan Mei, Tao Cheng, Li Wu, Shaorong Gao, Xuan Che

Adenomyosis is a poorly understood gynecological disorder with limited treatment options. The study employed single-cell RNA sequencing and spatial transcriptomics to map transcriptional alterations across different regions of the uterus in adenomyosis patients and controls. It highlights unique epithelial and stromal subpopulations and aberrant signaling pathways involved in adenomyosis, offering potential targets for precise diagnostics and therapeutics.

Key findings from the study include:

  1. Unique epithelial (LGR5+) and stromal (PKIB+) subpopulations were identified in adenomyotic lesions, supporting a complex interplay between “invagination” and “metaplasia” theories. Additionally, WFDC1+ stromal progenitor cells might act as precursors to lesion-specific stromal cells, indicating a sophisticated mechanism of lesion formation.
  2. Abnormal angiogenic signaling and endothelial cell heterogeneity were observed in lesions. Notable pathways involved include vascular endothelial growth factor and angiopoietin, highlighting disrupted angiogenic processes in these tissues.
  3. Altered cell-cell communication was identified between ectopic and eutopic endometrium, particularly within adenomyotic lesions. The study found aberrant signaling pathways, including pleiotrophin, TWEAK, and WNT cascades, suggesting modified signaling dynamics in the lesions.

This study advances the understanding of adenomyosis by providing a comprehensive single-cell and spatial transcriptomic landscape. It reveals unique cellular subpopulations and signaling aberrations within adenomyotic lesions, supporting both invagination and metaplasia theories. These insights offer potential for developing precise diagnostic and therapeutic strategies, emphasizing the need for clinical validation of these findings. The work entitled “ Comprehensive transcriptional atlas of human adenomyosis deciphered by the integration of single-cell RNA-sequencing and spatial transcriptomics ” was published on Protein & Cell (published on Mar. 15, 2024).



Journal

Protein & Cell

DOI

10.1093/procel/pwae012

Method of Research

Experimental study

Subject of Research

Human tissue samples

Article Title

Comprehensive transcriptional atlas of human adenomyosis deciphered by the integration of single-cell RNA-sequencing and spatial transcriptomics

Article Publication Date

15-Mar-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

New Insights into Evolution Revealed Through Lizard Genetics

October 8, 2025
blank

Cell-Free DNA Reflects Tumor Transcription Factor Activity

October 8, 2025

New Method to Monitor Wild Reindeer Populations Could Boost Conservation Efforts

October 8, 2025

New Molecular Method Detects Varroa Destructor in Nigeria

October 8, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1051 shares
    Share 420 Tweet 263
  • New Study Reveals the Science Behind Exercise and Weight Loss

    99 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    78 shares
    Share 31 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

TROP2: A Target for Cisplatin-Resistant Germ Cell Tumors

New Insights into Evolution Revealed Through Lizard Genetics

Prenatal Vitamin D and Long-Term Brain Health

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.