• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Complex green organisms emerged a billion years ago

Bioengineer by Bioengineer
January 23, 2024
in Biology
Reading Time: 5 mins read
0
Liquid samples of different algal species
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Of all the organisms that photosynthesize, land plants have the most complex bodies. How did this morphology emerge? A team of scientists led by the University of Göttingen has taken a deep dive into the evolutionary history of morphological complexity in streptophytes, which include land plants and many green algae. Their research allowed them to go back in time to investigate lineages that emerged long before land plants existed. Their results revise the understanding of the relationships of a group of filamentous algal land colonizers much older than land plants. Using modern gene sequencing data, researchers pinpoint the emergence of multicellularity to almost a billion years ago. The results were published in the journal Current Biology.

Liquid samples of different algal species

Credit: Tatyana Darienko

Of all the organisms that photosynthesize, land plants have the most complex bodies. How did this morphology emerge? A team of scientists led by the University of Göttingen has taken a deep dive into the evolutionary history of morphological complexity in streptophytes, which include land plants and many green algae. Their research allowed them to go back in time to investigate lineages that emerged long before land plants existed. Their results revise the understanding of the relationships of a group of filamentous algal land colonizers much older than land plants. Using modern gene sequencing data, researchers pinpoint the emergence of multicellularity to almost a billion years ago. The results were published in the journal Current Biology.

 

The study focused on Klebsormidiophyceae, a class of green algae known for its ability to colonize diverse habitats worldwide. The team of researchers conducted extensive sampling, investigating habitats ranging from streams, rivers, and lake shores to bogs, soil, natural rocks, tree bark, acidic post-mining sites, sand dunes, urban walls, and building façades. “It’s really fascinating that these tiny robust little organisms have such a high diversity in their morphology and also are extremely well adapted to live in sometimes very harsh environments,” says Dr Tatyana Darienko, University of Göttingen’s Institute for Microbiology and Genetics. This comprehensive sampling aimed to create a global distribution map for Klebsormidiophyceae, emphasizing their adaptability, ecological significance, and hidden diversity. Based on genetic data calibrated by fossils, the researchers performed “molecular clock analyses”.

 

While delving into the complex evolutionary history of Klebsormidiophyceae, the researchers faced challenges in resolving phylogenetic relationships using traditional markers. To overcome this, they employed hundreds of genes obtained from the transcriptomes of 24 isolates from different continents and habitats. “Our approach, known as phylogenomics, was to reconstruct the evolutionary history taking into account whole genomes or large fractions of genomes,” explains Dr Iker Irisarri, Leibniz Institute for the Analysis of Biodiversity Change. “This extremely powerful method can reconstruct evolutionary relationships with very high precision.”

 

Their research revealed a new phylogenomic tree of life for Klebsormidiophyceae which is divided into three orders. “This deep dive into the phylogenomic framework and our molecular clock unveiled Klebsormidiophyceae’s ancient ancestor – a multicellular entity thriving millions of years ago whose descendants began to split into three distinct branches over 800 million years ago,” says Maaike Bierenbroodspot, PhD researcher in Applied Bioinformatics, University of Göttingen. These results were used to explore the evolutionary history of multicellularity within streptophytes. The study showed that an ancient common ancestor of land plants, other streptophyte algae, and Klebsormidiophyceae was already multicellular. Professor Jan de Vries, Göttingen University’s Institute for Microbiology and Genetics, concludes: “This finding sheds light on the genetic potential for multicellularity among streptophytes, indicating an ancient origin for this crucial trait almost a billion years ago.”

 

Original publication: Bierenbroodspot et al. “Phylogenomic insights into the first multicellular streptophyte”, Current Biology (2024). DOI: 10.1016/j.cub.2023.12.070

 

 

Contact:

 

Professor Jan de Vries

University of Göttingen

Faculty of Biology and Psychology

Institute of Microbiology and Genetics

Department of Applied Bioinformatics

Goldschmidtstraße 1, 37077 Göttingen, Germany

Tel: +49 (0)551 39-13995

Email: [email protected]

www.uni-goettingen.de/en/613776.html

 

 

Of all the organisms that photosynthesize, land plants have the most complex bodies. How did this morphology emerge? A team of scientists led by the University of Göttingen has taken a deep dive into the evolutionary history of morphological complexity in streptophytes, which include land plants and many green algae. Their research allowed them to go back in time to investigate lineages that emerged long before land plants existed. Their results revise the understanding of the relationships of a group of filamentous algal land colonizers much older than land plants. Using modern gene sequencing data, researchers pinpoint the emergence of multicellularity to almost a billion years ago. The results were published in the journal Current Biology.

 

The study focused on Klebsormidiophyceae, a class of green algae known for its ability to colonize diverse habitats worldwide. The team of researchers conducted extensive sampling, investigating habitats ranging from streams, rivers, and lake shores to bogs, soil, natural rocks, tree bark, acidic post-mining sites, sand dunes, urban walls, and building façades. “It’s really fascinating that these tiny robust little organisms have such a high diversity in their morphology and also are extremely well adapted to live in sometimes very harsh environments,” says Dr Tatyana Darienko, University of Göttingen’s Institute for Microbiology and Genetics. This comprehensive sampling aimed to create a global distribution map for Klebsormidiophyceae, emphasizing their adaptability, ecological significance, and hidden diversity. Based on genetic data calibrated by fossils, the researchers performed “molecular clock analyses”.

 

While delving into the complex evolutionary history of Klebsormidiophyceae, the researchers faced challenges in resolving phylogenetic relationships using traditional markers. To overcome this, they employed hundreds of genes obtained from the transcriptomes of 24 isolates from different continents and habitats. “Our approach, known as phylogenomics, was to reconstruct the evolutionary history taking into account whole genomes or large fractions of genomes,” explains Dr Iker Irisarri, Leibniz Institute for the Analysis of Biodiversity Change. “This extremely powerful method can reconstruct evolutionary relationships with very high precision.”

 

Their research revealed a new phylogenomic tree of life for Klebsormidiophyceae which is divided into three orders. “This deep dive into the phylogenomic framework and our molecular clock unveiled Klebsormidiophyceae’s ancient ancestor – a multicellular entity thriving millions of years ago whose descendants began to split into three distinct branches over 800 million years ago,” says Maaike Bierenbroodspot, PhD researcher in Applied Bioinformatics, University of Göttingen. These results were used to explore the evolutionary history of multicellularity within streptophytes. The study showed that an ancient common ancestor of land plants, other streptophyte algae, and Klebsormidiophyceae was already multicellular. Professor Jan de Vries, Göttingen University’s Institute for Microbiology and Genetics, concludes: “This finding sheds light on the genetic potential for multicellularity among streptophytes, indicating an ancient origin for this crucial trait almost a billion years ago.”

 

Original publication: Bierenbroodspot et al. “Phylogenomic insights into the first multicellular streptophyte”, Current Biology (2024). DOI: 10.1016/j.cub.2023.12.070

 

 

Contact:

 

Professor Jan de Vries

University of Göttingen

Faculty of Biology and Psychology

Institute of Microbiology and Genetics

Department of Applied Bioinformatics

Goldschmidtstraße 1, 37077 Göttingen, Germany

Tel: +49 (0)551 39-13995

Email: [email protected]

www.uni-goettingen.de/en/613776.html

 

 

 



Journal

Current Biology

DOI

10.1016/j.cub.2023.12.070

Article Title

Phylogenomic insights into the first multicellular streptophyte

Article Publication Date

19-Jan-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Single-Cell Rice Atlas Uncovers Cis-Regulatory Evolution

Single-Cell Rice Atlas Uncovers Cis-Regulatory Evolution

September 17, 2025
Functional Archaellum Structure in Chloroflexota Bacteria

Functional Archaellum Structure in Chloroflexota Bacteria

September 17, 2025

Nanomaterials Influence on Cellulase from Aspergillus and Trichoderma

September 17, 2025

Decoding Danger: How Australian Lizards Evolved to Outrun Wildfires

September 17, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Caveolae, Rho Kinase Drive Senescence in Cancer Cells

Single-Cell Rice Atlas Uncovers Cis-Regulatory Evolution

New PfDHFR-TS Inhibitors Discovered from Natural Compounds

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.