• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Combination therapy targets genetic mutation found in many cancers

Bioengineer by Bioengineer
June 2, 2017
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: MD Anderson Cancer Center

HOUSTON – A study at The University of Texas MD Anderson Cancer Center has shown promise for effective treatment of therapy-resistant cancers caused by a mutation of the RAS gene found in many cancers. The pre-clinical study combined therapies targeting the inhibitors polyADP ribose polymerase (PARP) and mitogen-activated protein kinase (MEK). The findings were published this week in Science Translational Medicine.

Mutations in the RAS gene account for more than 90 percent of pancreatic cancers, 50 percent of colorectal cancers, and 30 percent of lung cancers, and a significant portion of many other types of tumors. Unfortunately, these cancers are usually resistant to traditional treatments contributing to poor patient outcomes.

"Nowhere is the need for targeted therapies greater than for cancers driven by oncogenic RAS, which represents the most common type of potentially targetable mutation in cancer," said Gordon Mills, M.D., Ph.D., chair of Systems Biology. "Our study demonstrated that the rational combination of PARP and MEK inhibitors warrants clinical investigation in patients with RAS-mutant tumors where there are few effective therapeutic options."

PARP inhibitors block a key pathway for cellular DNA repair, effectively stopping many cancers with defects in DNA repair from growing, but the disease soon gains resistance due to the tumor's cell ability to adapt to stresses caused by the therapy. MEK inhibitors also are used to affect pathways often overactive in some cancers.

Mills' team found that combinations of PARP and MEK inhibitors evoked "unexpected cytotoxic effects" in vitro and in vivo in multiple RAS-mutant tumor models across tumor lineages where RAS mutations are prevalent. The combination therapy worked independent of mutations in tumor suppressor genes including BRCA1, BRCA2 and p53, suggesting the dual therapy's potential as a treatment for multiple RAS-mutant cancers. It also was effective for tumors that had become resistant to PARP, as well as in cells that did not have aberrations in BRCA1 and BRCA2, suggesting the combination could expand to a wide spectrum of patients likely to benefit.

"The sensitivity of RAS-mutant cells to the combination appears to be independent of intrinsic gene expression patterns, as observed across multiple different lineages," said Mills. "Because the synergistic responses to MEK1 and PARP1 combinations also were independent of p53 mutation status, the approach should be effective in both normal and mutant p53 tumors. Together, the in vitro and in vivo data argue that a MEK1 and PARP1combination offer the potential to induce cell death and increase the magnitude, duration and spectrum of PARP activity."

Currently, clinical trials in this area of investigation are under consideration at MD Anderson.

###

MD Anderson research team members included Chaoyang Sun, Ph.D., Yong Fang, Ph.D., Jun Yin, Ph.D., Jian Chen, Ph.D., Dong Zhang, Ph.D., Xiaohua Chen, Ph.D., Christopher Vellano, Ph.D., Kang Jing Jeong, Ph.D., Yiling Lu, M.D., and Shiaw-Yih Lih, Ph.D., all of Systems Biology; Zhenlin Ju, Ph.D., Bioinformatics and Computational Biology; Patrick Kwok-Shing Ng, Ph.D., Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy; Shannon Westin, M.D., Gynecologic Oncology and Reproductive Medicine; and Guang Peng, M.D., Ph.D., Clinical Cancer Prevention.

Other participating institutions included Tongji Medical College, Wuhan, China; Zhejiang University School of Medicine, Hangzhou, China; University of California, San Francisco; Baylor College of Medicine, Houston; and Harvard Medical School, Boston.

The study was funded by the National Institutes of Health (SU01CA168394, SP50CA098258, SP50CA083639, and CA016672); Susan G. Komen (SAC110052); the Andrew Sabin Family Fellowship program; and the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation.

Media Contact

Ron Gilmore
[email protected]
713-745-1898
@mdandersonnews

http://www.mdanderson.org

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Reassessing AMH’s Impact in DHEA PCOS Research

November 5, 2025

Food Focus in Binge Eating: Training Limitations Revealed

November 5, 2025

Oxidative Stress Linked to Abnormal Repetitive Behaviors in Mice

November 5, 2025

Resveratrol Activation of SIRT1 Reduces Trophoblast Pyroptosis

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Reassessing AMH’s Impact in DHEA PCOS Research

Food Focus in Binge Eating: Training Limitations Revealed

Double Disadvantage: The Impact is Greater Than Twice as Severe

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.