• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Combination therapy targets genetic mutation found in many cancers

Bioengineer by Bioengineer
June 2, 2017
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: MD Anderson Cancer Center

HOUSTON – A study at The University of Texas MD Anderson Cancer Center has shown promise for effective treatment of therapy-resistant cancers caused by a mutation of the RAS gene found in many cancers. The pre-clinical study combined therapies targeting the inhibitors polyADP ribose polymerase (PARP) and mitogen-activated protein kinase (MEK). The findings were published this week in Science Translational Medicine.

Mutations in the RAS gene account for more than 90 percent of pancreatic cancers, 50 percent of colorectal cancers, and 30 percent of lung cancers, and a significant portion of many other types of tumors. Unfortunately, these cancers are usually resistant to traditional treatments contributing to poor patient outcomes.

"Nowhere is the need for targeted therapies greater than for cancers driven by oncogenic RAS, which represents the most common type of potentially targetable mutation in cancer," said Gordon Mills, M.D., Ph.D., chair of Systems Biology. "Our study demonstrated that the rational combination of PARP and MEK inhibitors warrants clinical investigation in patients with RAS-mutant tumors where there are few effective therapeutic options."

PARP inhibitors block a key pathway for cellular DNA repair, effectively stopping many cancers with defects in DNA repair from growing, but the disease soon gains resistance due to the tumor's cell ability to adapt to stresses caused by the therapy. MEK inhibitors also are used to affect pathways often overactive in some cancers.

Mills' team found that combinations of PARP and MEK inhibitors evoked "unexpected cytotoxic effects" in vitro and in vivo in multiple RAS-mutant tumor models across tumor lineages where RAS mutations are prevalent. The combination therapy worked independent of mutations in tumor suppressor genes including BRCA1, BRCA2 and p53, suggesting the dual therapy's potential as a treatment for multiple RAS-mutant cancers. It also was effective for tumors that had become resistant to PARP, as well as in cells that did not have aberrations in BRCA1 and BRCA2, suggesting the combination could expand to a wide spectrum of patients likely to benefit.

"The sensitivity of RAS-mutant cells to the combination appears to be independent of intrinsic gene expression patterns, as observed across multiple different lineages," said Mills. "Because the synergistic responses to MEK1 and PARP1 combinations also were independent of p53 mutation status, the approach should be effective in both normal and mutant p53 tumors. Together, the in vitro and in vivo data argue that a MEK1 and PARP1combination offer the potential to induce cell death and increase the magnitude, duration and spectrum of PARP activity."

Currently, clinical trials in this area of investigation are under consideration at MD Anderson.

###

MD Anderson research team members included Chaoyang Sun, Ph.D., Yong Fang, Ph.D., Jun Yin, Ph.D., Jian Chen, Ph.D., Dong Zhang, Ph.D., Xiaohua Chen, Ph.D., Christopher Vellano, Ph.D., Kang Jing Jeong, Ph.D., Yiling Lu, M.D., and Shiaw-Yih Lih, Ph.D., all of Systems Biology; Zhenlin Ju, Ph.D., Bioinformatics and Computational Biology; Patrick Kwok-Shing Ng, Ph.D., Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy; Shannon Westin, M.D., Gynecologic Oncology and Reproductive Medicine; and Guang Peng, M.D., Ph.D., Clinical Cancer Prevention.

Other participating institutions included Tongji Medical College, Wuhan, China; Zhejiang University School of Medicine, Hangzhou, China; University of California, San Francisco; Baylor College of Medicine, Houston; and Harvard Medical School, Boston.

The study was funded by the National Institutes of Health (SU01CA168394, SP50CA098258, SP50CA083639, and CA016672); Susan G. Komen (SAC110052); the Andrew Sabin Family Fellowship program; and the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation.

Media Contact

Ron Gilmore
[email protected]
713-745-1898
@mdandersonnews

http://www.mdanderson.org

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Cost-Effectiveness of Anti-CGRP Migraine Treatments

September 23, 2025

Improving Sleep to Prevent Delirium in Home Hospitals

September 23, 2025

Cholesterol Reprogramming Drives Microglial Neuroinflammation Post-Stroke

September 23, 2025

Prophylactic Surfactant in the Era of Minimally Invasive Delivery

September 23, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Why Social Media Fails to Transform Academic Medicine

Sickle Cell Disease: Rare Pediatric Case of Hematomas

Evaluating Cost-Effectiveness of Anti-CGRP Migraine Treatments

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.