• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Columbia leads effort to develop a quantum simulator

Bioengineer by Bioengineer
September 25, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The project is supported by a NSF Convergence Accelerator award that funds team-based, multidisciplinary initiatives addressing challenges of national importance

IMAGE

Credit: NSF

Quantum technologies–simulators and computers specifically–have the potential to revolutionize the 21st century, from improved national defense systems to drug discovery to more powerful sensors and communication networks.

But the field still needs to make major advances before quantum computing can surpass existing tools to process information and live up to its promise.

A multidisciplinary research team led by Columbia University is in a position to bring quantum technology out of the lab into real-world applications.

The team has received a $1 million National Science Foundation (NSF) Convergence Accelerator award to build a quantum simulator, a device that can solve problems that are difficult to simulate on classical computers. The project includes physicists, engineers, computer scientists, mathematicians, and educators from academia, national labs, and industry.

“This funding will enable us to develop the concept for a quantum simulator that can help tackle real-world challenges,” said Sebastian Will, assistant professor of physics at Columbia and principal investigator on the project. “For this we brought a diverse team together that includes experts in atomic physics, photonics, electronics, and software, as well as future users of the platform.”

The National Science Foundation launched its Convergence Accelerator program, a new structure unique for NSF and the federal government, in 2019 to help quickly transition research and discovery aligning with NSF’s “Big Ideas” into practice. In 2020, the NSF continues to invest in two transformative research areas of national importance: quantum technology and artificial intelligence.

Columbia is one of 11 institutions nationwide to receive a Phase One Convergence Accelerator award for quantum technology. These awards support the National Quantum Initiative Act passed in 2018 to accelerate the development of quantum science and information technology applications. The U.S. Congress has authorized up to $1.2 billion of research funding for quantum information science, including computing.

The hope of building a quantum computer with the potential to resolve seemingly intractable problems across many different industries and applications relies on controlling microscopic quantum systems with higher and higher precision in order to put them to work for computing tasks.

With this grant, the Columbia team will develop hardware and software concepts to build a versatile quantum simulator based on ordered arrays of atoms. The group will store quantum information in individual atoms and program them to perform quantum simulations. Besides developing the device, the plan is to make it accessible to a broad user base via cloud-computing.

Over the next nine months, the 2020 cohort Convergence Accelerator teams will work to develop their initial concept, identify new team members, and participate in a curriculum focusing on design, team science, pitch preparation, and presentation coaching. After developing a prototype, the teams will participate in a pitch competition and proposal evaluation. Teams selected for phase two will be eligible for additional funding: up to $5 million over 24 months.

By the end of phase two, teams are expected to deliver solutions that impact societal needs at scale.

“The quantum technology and AI-driven data and model-sharing topics were chosen based on community input and identified federal research and development priorities,” said Douglas Maughan, head of the NSF Convergence Accelerator program. “This is the program’s second cohort, and we are excited for these teams to use convergence research and innovation-centric fundamentals to accelerate solutions that have a positive societal impact.”

The simulator project team includes collaborators from Columbia University, principal investigator Sebastian Will, co-principal investigators Alex Gaeta and Nanfang Yu, and others; Brookhaven National Lab, co-principal investigators Layla Hormozi and Gabriella Carini, and others; City University of New York; Flatiron Institute; and industry partners from Atom Computing, QuEra, IBM, and Bloomberg.

###

Media Contact
Carla Cantor
[email protected]

Original Source

https://news.columbia.edu/columbia-leads-NSF-effort-build-quantum-simulator-computing

Tags: Chemistry/Physics/Materials SciencesComputer ScienceHardwareResearch/DevelopmentSoftware EngineeringTechnology/Engineering/Computer ScienceTheory/Design
Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

August 1, 2025
Oven-Temperature Treatment (~300℃) Enhances Catalyst Performance by Six Times

Oven-Temperature Treatment (~300℃) Enhances Catalyst Performance by Six Times

August 1, 2025

5 Innovations Securing Water Sources and Ensuring Availability

August 1, 2025

Innovative Imaging Technique Reveals Elemental Distributions in Frozen Solvents within Nanomaterials

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Sustainability Accelerator Chooses 41 Promising Projects Poised for Rapid Scale-Up

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary AI Tool Requires Minimal Data to Analyze Medical Images

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

What “And” vs. “Then” Reveal About Hospital Visits: Insights from Online Reviews

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.