• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Color-changing bandages sense and treat bacterial infections

Bioengineer by Bioengineer
January 29, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Adapted from ACS Central Science 2020, DOI: 10.1021/acscentsci.9b01104


According to the World Health Organization, antibiotic resistance is one of the biggest threats to global health. Sensing and treating bacterial infections earlier could help improve patients’ recovery, as well curb the spread of antibiotic-resistant microbes. Now, researchers reporting in ACS Central Science have developed color-changing bandages that can sense drug-resistant and drug-sensitive bacteria in wounds and treat them accordingly.

Xiaogang Qu and colleagues developed a material that changes color from green to yellow when it contacts the acidic microenvironment of a bacterial infection. In response, the material, which is incorporated into a bandage, releases an antibiotic that kills drug-sensitive bacteria. If drug-resistant bacteria are present, the bandage turns red in color through the action of an enzyme produced by the resistant microbes. When this happens, the researchers can shine light on the bandage, causing the material to release reactive oxygen species that kill or weaken the bacteria, making them more susceptible to the antibiotic. The team showed that the bandage could speed the healing of wounds in mice that were infected with drug-sensitive or drug-resistant bacteria.

###

The authors acknowledge funding from the National Natural Science Foundation of China and the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences.

The paper’s abstract will be available on January 29 at 8 a.m. Eastern time here: http://pubs.acs.org/doi/abs/10.1021/acscentsci.9b01104.

For more research news, journalists and public information officers are encouraged to apply for complimentary press registration for the ACS Spring 2020 National Meeting & Exposition in Philadelphia.

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS’ mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and its people. The Society is a global leader in providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a specialist in scientific information solutions (including SciFinder® and STN®), its CAS division powers global research, discovery and innovation. ACS’ main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us: Twitter | Facebook

Media Contact
Katie Cottingham
[email protected]
301-775-8455

Tags: BacteriologyBiomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesMicrobiologyTrauma/Injury
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Activating Alcohols as Sulfonium Salts for Photocatalysis

November 26, 2025
blank

Carbonate Ions Drive Water Ordering in CO₂ Reduction

November 25, 2025

Isolable Germa-Isonitrile with N≡Ge Triple Bond

November 24, 2025

Fluorescent RNA Switches Detect Point Mutations Rapidly

November 21, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    104 shares
    Share 42 Tweet 26
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    63 shares
    Share 25 Tweet 16

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Laminin-α2 Loss Triggers Muscle Stem Cell Failure

Advancing MgO Bioceramics: Hydroxyapatite-SiO₂ Dual Oxidation

New Insights: Low Lateralization in Cushing’s Diagnosis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.