• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

College of Medicine – Tucson receives $2.7 million grant for diabetes research

Bioengineer by Bioengineer
March 7, 2024
in Health
Reading Time: 2 mins read
0
Klearchos Papas, PhD
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The Juvenile Diabetes Research Foundation awarded researchers at the University of Arizona College of Medicine – Tucson a $2.7 million grant for clinical testing of a novel, oxygen-enabled, implantable pouch containing pancreatic cell clusters that produce insulin.

Klearchos Papas, PhD

Credit: UArizona Health Sciences

The Juvenile Diabetes Research Foundation awarded researchers at the University of Arizona College of Medicine – Tucson a $2.7 million grant for clinical testing of a novel, oxygen-enabled, implantable pouch containing pancreatic cell clusters that produce insulin.

Type 1 diabetes is an autoimmune disease in which the body makes insufficient insulin, a hormone produced in the pancreas that regulates blood glucose levels. The disease is currently treated with supplemental insulin delivered by manual injection or through a subcutaneous insulin pump. Patients with Type 1 diabetes need to test their blood sugar levels and receive insulin multiple times a day to ensure their blood glucose stays within the recommended range.

The implantable pouch, developed by a team led by Klearchos Papas, PhD, professor of surgery, is a bioartificial pancreas containing groups of cells called islets that can produce insulin. The team hopes the implant will remove the need for people to test their blood-sugar levels or inject supplemental insulin. Clinical testing is expected to begin within three years.

“Our approach will eliminate big swings in blood sugar that can cause all kinds of problems. It controls blood-sugar levels so you don’t have to think about it.” Papas said.” “There are some similar encapsulation approaches being tested, but nothing really has worked. We believe we have the differentiating component that will make it work, so we’re very excited.”

The key difference with Papas’ device is the delivery of oxygen to the pouch in combination with highly specialized membranes. Oxygen encourages blood vessel growth within the pouch, improving the viability and function of the islet cells within. The membranes promote the growth of new blood vessels near or within the device to allow for improved nutrient exchange and a reduced foreign-body response, a common issue with implants. 

The implant prototype uses islets from donors who may not be immunologically matched with the recipient, making it similar to an organ transplant but without the need for major surgery. Immune-suppressing drugs are required to prevent the immune system from attacking the donor cells. 

Researchers in the field believe that lab-grown islets genetically modified to be compatible with a person’s immune system could be available in three to five years, removing the need for immunosuppression. Papas is hopeful clinical testing and validation of the implant is complete by the time lab-grown cells become available so that people with Type 1 diabetes can benefit from pancreas-like functionality without the potentially harmful effects of immunosuppression.



Share12Tweet8Share2ShareShareShare2

Related Posts

NJIT Study Reveals Vision Therapy Restores Clarity from Concussion-Induced Double and Blurred Vision

October 2, 2025

Mental Health Advances Most Strongly Predict Increased Life Satisfaction

October 2, 2025

CU Anschutz Scientist Awarded NIH Grant to Explore Earthworm Hemoglobin as an Alternative to Red Blood Cells in Organ Perfusion

October 2, 2025

EBMT Unveils 2025 Clinical Practice Guidelines for Hematopoietic Cell Transplantation and CAR-T Therapy

October 2, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    91 shares
    Share 36 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    80 shares
    Share 32 Tweet 20
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

How Does Cellular Activity in Early Life Impact Cancer and Aging?

NJIT Study Reveals Vision Therapy Restores Clarity from Concussion-Induced Double and Blurred Vision

Pseudokinases Drive Peptide Cyclization via Thioether Crosslinking

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.