• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

CNIC scientists identify a shuttle protein required for the nuclear import of proteins essential for organ growth and development

Bioengineer by Bioengineer
March 4, 2022
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists at the Centro Nacional de Investigaciones Cardiovasculares (CNIC) have identified a nuclear import mechanism essential for organ growth and development. Manipulation of this mechanism has potential applications in the control of organ growth and organ regeneration.

Photo

Credit: CNIC

Scientists at the Centro Nacional de Investigaciones Cardiovasculares (CNIC) have identified a nuclear import mechanism essential for organ growth and development. Manipulation of this mechanism has potential applications in the control of organ growth and organ regeneration.

Organ growth and regeneration require the entry into the cell nucleus of proteins that activate essential genes for these processes. This process is the subject of a new study by CNIC scientists, led by Dr. Miguel Ángel del Pozo Barriuso, who heads the Mechanoadaptation and Caveolae Biology group, and group member Dr. Asier Echarri Aguirre. The scientists have identified the mechanism that controls the nuclear import of these proteins in response to mechanical stimuli, such as the hemodynamic forces generated by arterial blood flow, tumor rigidity, or locomotory movements during routine activities like walking or sports. The results are published today in Nature Communications.

Most biological processes require the nuclear entry of key regulatory factors. Processes such as fetal development, tissue regeneration after trauma or infarction, cardiovascular disease, and cancer generate mechanical signals that stimulate cell multiplication to regenerate the damaged tissue or remodel the surrounding tissue matrix.

These events require specific factors that are activated by mechanical signals and enter the nucleus, where they activate the expression of genes required to promote organ growth or regeneration.

“One of the most important of these factors is the protein YAP,” explained Dr. del Pozo Barriuso. “Its nuclear import is a highly regulated process, and only takes place when specifically required. Macromolecules like YAP enter the nucleus through nuclear pores by binding to a nuclear transport or shuttle protein.”

What makes YAP especially interesting is that, in response to mechanical forces acting on the tissue, “it is activated and enters the nucleus, where it switches on several genes that determine the growth of the affected organ,” explained Dr. Echarri Aguirre. “Moreover, YAP is mutated in many diseases, making it even more interesting,” added study first author María García.

Nevertheless, although YAP has been studied extensively due to its roles in organ regeneration, cardiovascular disease, and cancer, its nuclear entry route and the nuclear shuttle protein it interacts with were unknown.

The CNIC scientists have now shown that the YAP shuttle protein partner is importin-7, which binds YAP and transports it to the nucleus, where it can induce cell and tissue growth.

The CNIC team, in partnership with colleagues at the Max Planck Institute for Biophysical Chemistry in Germany and the Instituto Cajal in Madrid, have also demonstrated that YAP monopolizes importin-7, thereby restricting nuclear access by other factors. The study thus shows that YAP not only controls genes important for organ growth, but also regulates nuclear shuttle activity and the nuclear import of other factors.

The Nature Communications study also identifies a new target for the pharmacological blockade of nuclear import; by reducing the expression of importin-7 in organs of the fruit fly Drosophila, the scientists were able to block YAP nuclear import and thus prevent excess organ growth (Figure 1).

“This finding has major clinical potential,” said María García, “because the progression of several diseases, including atherosclerosis, cancer, and fibrosis, is in part driven by uncontrolled and deleterious nuclear import of YAP.”

“Blocking the binding of YAP to importin-7 would thus provide a way to prevent inappropriate YAP nuclear entry and subsequent disease.”

The study thus identifies a new target for the development of drugs targeting YAP nuclear import in diseases associated with an enormous societal and economic cost.

Scientists of the CIBER cardiovascular disease research network participated in this study. The study was supported by funding from the following bodies: Ministerio de Ciencia, Innovación y Universidades; Agencia Estatal de Investigación / European Regional Development Fund “A way to make Europe”; the Comunidad Autónoma de Madrid; Fundació La Marató de TV3; The La Caixa Foundation; the Asociación Española Contra el Cáncer; and the European Union Horizon 2020 Research and Innovation Programme through a Marie Sklodowska-Curie award.



Journal

Nature Communications

DOI

10.1038/s41467-022-28693-y

Method of Research

Experimental study

Subject of Research

Animal tissue samples

Article Title

Mechanical control of nuclear import by Importin-7 is regulated by its dominant cargo YAP

Article Publication Date

4-Mar-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Streamlined Hybrid Capture Enhances Specificity, Eliminates PCR

September 2, 2025

DNA Reveals Diet and Prey of Wolves and Lynx

September 2, 2025

Rice Researchers Pioneer Engineering of Computing Systems Using Living Cells

September 2, 2025

Scientists Reveal Link Between Gut Fungi, Human Genetics, and Disease Susceptibility

September 2, 2025

POPULAR NEWS

  • Needlestick Injury Rates in Nurses and Students in Pakistan

    296 shares
    Share 118 Tweet 74
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Anxiety and Reassurance in Urban Chinese Seniors

COVID-19’s Effect on ART Outcomes: Multicenter Study

CRISPR/Cas9: A New Frontier in Male Fertility

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.