• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

CNIC scientists discover an essential mechanism in the immune response

Bioengineer by Bioengineer
July 5, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: CNIC

Scientists at the Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) have discovered that the transcriptional regulator CTCF plays an essential role in antibody production. The study, led by Dr. Almudena Ramiro and published in Nature Communications, demonstrates that CTCF is essential for the ability of B lymphocytes to correctly protect the body against infection by pathogens. The research team shows that in the absence of CTCF, the immune system does not function correctly, a finding with implications for vaccine research.

B lymphocytes generate the antibodies that protect us against infection by pathogens. Explaining the background to the research, Dr. Ramiro describes how "an essential process in antibody generation takes place in structures called germinal centers, where antibody genes undergo small modifications that increase the efficiency and specificity of the immune response. The germinal center reaction generates two types of cell: antibody-secreting plasma B cells, which combat infection, and memory B cells, which persist as a reservoir of cells that remember the first infection and permit a faster and more efficient immune activation in response to subsequent encounters with the same pathogen. The germinal centers are thus essential for the protective effect of vaccines."

The generation of the germinal centers requires B cells to undergo a complex transcriptional program to allow them to divide rapidly, modify their antibody genes, and pass through a selection procedure that induces either their survival or their death. In addition, adds Dr. Ramiro, "after completing this program, the B lymphocytes can differentiate into plasma cells, which no longer proliferate but instead secrete large amounts of antibodies. These 2 transitions are coordinated by 2 transcriptional repressors: Bcl-6, the master regulator of the germinal center, and Blimp-1, which regulates the transcriptional program in plasma cells."

The study published today in Nature Communications analyzes the role played by CTCF in the germinal center differentiation program. For the study, the research team used mice engineered to lack CTCF specifically in germinal center B lymphocytes.

The team found that mice lacking CTCF were incapable of generating germinal centers during the immune response. In vitro experiments and high-throughput RNA sequencing revealed that CTCF deletion profoundly altered the B lymphocyte transcriptional program, shifting cells from a gene expression profile typical of the germinal center to one more similar to that seen in plasma cells. Thus, in the absence of CTCF, Blimp-1 expression is activated prematurely, the cells do not proliferate normally, and they secrete antibodies precociously. "Together," explains Dr. Ramiro, "the results indicate that CTCF is important for maintaining the germinal center differentiation program and prevents premature differentiation towards plasma cells."

The scientists conclude that the study reveals an essential function for CTCF in the orchestration of transcriptional changes during the terminal differentiation of B lymphocytes and advances understanding of the mechanisms that regulate the immune response.

###

Media Contact

Fátima Lois
[email protected]
@@CNIC_CARDIO

http://www.cnic.es

Related Journal Article

http://dx.doi.org/10.1038/NCOMMS16067

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

New analysis across the tree of life reveals most species evolved during bursts of rapid diversification

New analysis across the tree of life reveals most species evolved during bursts of rapid diversification

August 20, 2025
For Apes, What’s Out of Sight Stays on Their Mind

For Apes, What’s Out of Sight Stays on Their Mind

August 20, 2025

Soybean Phytocytokine-Receptor Module Boosts Disease Resistance

August 20, 2025

Breakthrough Study Reveals New Methods to Protect Nerve Cells from ALS

August 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mandatory Labeling of Additional Food Allergens: A Critical Measure Against Anaphylaxis Risks?

Dresden Research Team Develops AI Model for Simultaneous Detection of Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Long-Term Metabolic Surgery Shapes Innate Immune Cells

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.