• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

CNIC scientists discover a key signal in intercellular communication

Bioengineer.org by Bioengineer.org
January 19, 2018
in Headlines, Health, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: CNIC

A team of scientists at the Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), led by Prof. Francisco Sánchez-Madrid, has characterized a cell signal that impedes intercellular communication and could play a central role in biomedical strategies such as gene therapy, vaccine design, and immunotherapy. The study, published today in Nature Communications, characterizes a signal that impedes the secretion of nanovesicles called exosomes. Cells secrete exosomes as a means of intercellular communication; however, certain viruses can use exosomes as "Trojan horses" to facilitate their propagation and entry into neighboring cells.

The signal, called ISGylation, has in the past been viewed mainly as an antiviral signal, although some studies show that it can also be activated by other stimuli such as a lack of oxygen, aging, or cancer. "In these situations, the secretion of exosomes, and therefore communication between cells, can be affected by this modification," explains Dr. Carolina Villarroya.

The research team is dedicated to decoding the processes that control exosome secretion and exploring potential biomedical applications. As Dr. Sánchez-Madrid explains, "as well as acting as messengers in intercellular communication, exosomes are potential tools for gene therapy, vaccine design, and immunotherapy." Several clinical trials are underway to assess new treatments using this approach.

The Nature Communications article describes how an antiviral signal activates the programmed degradation of proteins involved in exosome degradation. According to Villarroya, this signal "marks specific proteins located in endosomes, the place where exosomes are formed. This mark redirects these proteins toward the degradation pathway and impedes exosome secretion." Sánchez-Madrid points out that this newly identified mechanism, through which cells defend themselves against infection by activating the degradation of their own proteins, "could also be exploited by external agents for their propagation."

###

The study was carried out by CNIC-UAM scientists Carolina Villarroya, Francesc Baixauli, Irene Fernández, María Mittelbrunn, Daniel Torralba, and Olga Moreno, in collaboration with Susana Guerra (UAM) and Carles Enrich (IDIBAPS).

Media Contact

Fatima Lois
[email protected]
34-639-282-477
@@CNIC_CARDIO

http://www.cnic.es

Share12Tweet8Share2ShareShareShare2

Related Posts

Emblica officinalis Extract Shows Anti-Glioblastoma Effects In Vitro

October 14, 2025

AHSA1: Prognostic Biomarker and Immunotherapy Target

October 14, 2025

Microscale Waveguide Arrays Revolutionize Phononic Circuitry

October 14, 2025

Linking Mutations to Cells via Holographic Cytometry

October 14, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1237 shares
    Share 494 Tweet 309
  • New Study Reveals the Science Behind Exercise and Weight Loss

    104 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    92 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Emblica officinalis Extract Shows Anti-Glioblastoma Effects In Vitro

AHSA1: Prognostic Biomarker and Immunotherapy Target

Microscale Waveguide Arrays Revolutionize Phononic Circuitry

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.