• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Clutch-stack-driven molecular gears in crystals could propel material innovation

Bioengineer by Bioengineer
January 19, 2024
in Chemistry
Reading Time: 3 mins read
0
Clutch-stack-driven molecular gears in crystals
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Temperature-controlled, reversible shifting of molecular gear motion in a solid crystal opens new possibilities for material design.

Clutch-stack-driven molecular gears in crystals

Credit: (Mingoo Jin, et al. Journal of the American Chemical Society. December 7, 2023)

Temperature-controlled, reversible shifting of molecular gear motion in a solid crystal opens new possibilities for material design.

Gears are an essential component of everyday machines. The ability to shift gears, like in a car, allows for control of the degree or direction of motion generated, making machines more versatile.  Now, a team led by researchers at the Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) in Hokkaido University has reported a new design strategy for realizing molecular-sized gears in crystals and the first example of controllable molecular gear shifting in a solid material. They developed a crystalline material that contains gear-like molecules which can be reversibly shifted between two types of motion. The design principle provides a blueprint for the development of versatile, new materials.

Researchers utilized a gear-shaped molecule called triaryltriazine, which has a center triazine ring with three phenylene rings attached to it—which act like the teeth of a gear. By attaching bulky, stationary molecules to the phenylene rings, researchers induced a “clutch stack” arrangement, where adjacent triaryltriazine molecules are rotated 60° from each other, rather than stacking in the same orientation. 

“The design of the clutch stack was inspired by the mechanical machinery system of the clutch in a car,” said Associate Professor Mingoo Jin.

The attached stationary molecules also created enough space for the three phenylene rings to rotate between two positions in a flapping motion. The clutch stack arrangement of the triaryltriazine molecules enabled adjacent molecules to hook on to each other as the phenylene rings rotated, much like interlocking gears. This resulted in the correlated motion of all the molecules in the stack.

When the temperature was raised above a certain threshold, a different correlated motion was observed, in which phenylene rings underwent a 180° rotation. This change in motion was attributed to a phase transition in the crystal that created more space between adjacent molecules, giving the phenylene rings more room to rotate.

Researchers found this change in motion could be reversed by cooling the crystal, marking the first time such controllable molecular motion has been observed in a solid. The effect of the molecular gearshift could be fine-tuned by adjusting the size and structure of the stationary molecule attached to the gear molecule. This adjustability opens the door to the development of new functional materials that leverage crystalline molecular machines.

“The next direction for our research would be using geared molecular motion in crystals to manipulate different physical properties of solid-state materials, such as light emission or thermal behavior” commented Jin.



Journal

Journal of the American Chemical Society

DOI

10.1021/jacs.3c08909

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

A Steric-Repulsion-Driven Clutch Stack of Triaryltriazines: Correlated Molecular Rotations and a Thermo-Responsive Gearshift in the Crystalline Solid

Article Publication Date

7-Dec-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Chemoselective Electrolysis Drives Precise Arene Hydroalkylation

Chemoselective Electrolysis Drives Precise Arene Hydroalkylation

November 17, 2025
blank

LHAASO Sheds Light on the Origin of the Cosmic Ray “Knee” Phenomenon

November 16, 2025

Metal-Hydroxyls Drive Proton Transfer in O–O Formation

November 15, 2025

What Insights Do Polymers Offer for Advancing Alzheimer’s Disease Treatment?

November 15, 2025

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    118 shares
    Share 47 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    90 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Apathy and Self-Awareness Neural Links in Parkinson’s

Delays in Endometriosis Diagnosis: A Healthcare Perspective

Exploring Innovative Materials for Enhanced Radiative Cooling

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.