• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Climate hack for steel industry: New process enhances sustainability of pig iron production

Bioengineer by Bioengineer
December 20, 2023
in Chemistry
Reading Time: 4 mins read
0
Integration of blast furnace, coke oven, and recycling of process gases and process heat reduces CO2 emission of steel production. (Graphics: SMS group)
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers of Karlsruhe Institute of Technology (KIT) and the SMS group have developed a new process to reduce CO2 emission of worldwide steel production by several hundred million tons per year. It is based on modernizing blast furnace technology with moderate investments and has already been demonstrated successfully in a pilot plant. The researchers report in Energy Advances.  (DOI: https://doi.org/10.1039/D3YA00227F)

Integration of blast furnace, coke oven, and recycling of process gases and process heat reduces CO2 emission of steel production. (Graphics: SMS group)

Credit: SMS Group

Researchers of Karlsruhe Institute of Technology (KIT) and the SMS group have developed a new process to reduce CO2 emission of worldwide steel production by several hundred million tons per year. It is based on modernizing blast furnace technology with moderate investments and has already been demonstrated successfully in a pilot plant. The researchers report in Energy Advances.  (DOI: https://doi.org/10.1039/D3YA00227F)

About eight percent of worldwide CO2 emissions are produced by steel industry. “This must be changed quickly,” says Professor Olaf Deutschmann from KIT’s Institute for Chemical Technology and Polymer Chemistry (ITCP). He admits that new hydrogen technologies may open up a climate-neutral perspective in the long term. But it will take several years until a sufficient amount of green hydrogen will be available worldwide and new plants will start operation. “We are running out of time in this climate crisis and we have to take countermeasures now.” A new process developed by Deutschmann’s research team in cooperation with the SMS group, Paul Wurth Entwicklungen, and KIT’s startup omegadot has now proved to be effective also in conventional plants. “The potential is very high. We expect that backfitting existing blast furnaces with moderate investments will reduce worldwide direct CO2 emissions by two to four percent,” Deutschmann says. 

New Process Reduces Emissions and Saves Energy 

The new process departs from iron. This raw material is contained in oxidized form in ores and extracted by means of reduction, i.e. the removal of oxygen, with coke in a blast furnace. Coke does not only produce the energy required for melting, but also serves as a reducing agent in the chemical reaction. “For this special purpose, coke is produced from fossil coal in a highly energy-consuming process,” says Philipp Blanck from ITCP, who cooperated closely with the SMS group at the pilot plant that was part of the steelworks. “In our process, we recycle CO2 from the furnace gas using coke oven gas. This yields a synthesis gas with a large hydrogen fraction that can be used as a coke substitute in the blast furnace.

For backfitting an existing plant, the Cowper heaters must be modified. Then, methane and CO2 from the coke oven gas and CO2 from the blast furnace gas are converted into synthesis gas, a mix of hydrogen and carbon monoxide. This process, so-called dry reforming, requires a high temperature that is mainly taken from the process heat of the blast furnace. The synthesis gas is then blown into the blast furnace to support iron oxide reduction there. “Per ton of steel produced, significant amounts of coke can be saved. Specific CO2 emissions are reduced by up to twelve percent,” Blanck says.

Successful Demonstration in Cooperation with Industry Partners

The process was demonstrated and validated at Dillinger Hüttenwerke, Saarland, in cooperation with omegadot software & consulting GmbH, a startup of KIT. omegadot has developed a software for the precise simulation and visualization of the process and for supporting scale-up to an industrial plant.

The pilot plant in Dillingen is operated by the SMS group together with Dillinger Hüttenwerke and Saarstahl. Operation is aimed at producing steel with reduced CO2 emissions. “Integration of the new process in the steelworks is the first step in the transformation of steel industry,” says Gilles Kass from the Research Section of SMS group, co-author of the publication. 

Original Publication
Philipp Blanck, Gilles Kass, Klaus Peter Kinzel, Olaf Deutschmann: Dry reforming of steelworks off-gases in a pilot plant integrated into a steel mill: influence of operating parameters; Energy Advances, 2023. DOI: 10.1039/d3ya00227f  

More about the KIT Energy Center

Being “The Research University in the Helmholtz Association”, KIT creates and imparts knowledge for the society and the environment. It is the objective to make significant contributions to the global challenges in the fields of energy, mobility, and information. For this, about 9,800 employees cooperate in a broad range of disciplines in natural sciences, engineering sciences, economics, and the humanities and social sciences. KIT prepares its 22,300 students for responsible tasks in society, industry, and science by offering research-based study programs. Innovation efforts at KIT build a bridge between important scientific findings and their application for the benefit of society, economic prosperity, and the preservation of our natural basis of life. KIT is one of the German universities of excellence.



Journal

Energy Advances

DOI

10.1039/D3YA00227F

Subject of Research

Not applicable

Article Title

Dry reforming of steelworks off-gases in a pilot plant integrated into a steel mill: influence of operating parameters

Article Publication Date

26-Oct-2023

COI Statement

The authors declare no conflict of interest.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough Unveiled: New Mechanism Enhances Plasma Confinement Performance

October 22, 2025
blank

Biochar and Moist Soils: A Breakthrough Solution to Reduce Farm Emissions Without Sacrificing Crop Yields

October 22, 2025

Palladium-Catalyzed Coupling of Propargyl Alcohol Esters with Diverse Nucleophiles Enables Synthesis of Polysubstituted Functionalized Conjugated Dienes

October 22, 2025

Vietnam’s Wise Choice Advances Scientific Progress

October 22, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1272 shares
    Share 508 Tweet 318
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    304 shares
    Share 122 Tweet 76
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    141 shares
    Share 56 Tweet 35
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    131 shares
    Share 52 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

High-Bandwidth Cavity Modulation Enables Advanced Pulse Combs

Heteroatom-Doped Porous Carbon: A Sustainable Counter Electrode

APOE4 Drives Nigral Tau Phosphorylation via Cholesterol

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.