• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Climate game changer

Bioengineer by Bioengineer
August 23, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New research from University of Alberta and University of Vienna microbiologists provides unparalleled insight into the Earth's nitrogen cycle, identifying and characterizing the ammonia-oxidizing microbe, Nitrospira inopinata. The findings, explained Lisa Stein, co-author and professor of biology, have significant implications for climate change research.

"I consider nitrogen the camouflaged beast in our midst," said Stein.

"Humans are now responsible for adding more fixed nitrogen, in the form of ammonium, to the environment than all natural sources combined. Because of that, the nitrogen cycle has been identified as the most unbalanced biogeochemical cycle on the planet."

The camouflaged beast

Earth's nitrogen cycle has been thrown significantly off balance by the process we use to make fertilizer, known as the Haber-Bosch process, which adds massive quantities of fixed nitrogen, or ammonium, to the environment. Downstream effects of excess ammonium has huge environmental implications, from dead zones in our oceans to a greenhouse gas effect 300 times that of carbon dioxide on a molecule to molecule basis.

Isolation and characterization of the Nitrospira inopinata microbe, Stein said, could hold the answers for Earth's nitrogen problem.

Practical applications

"The Nitrospira inopinata microbe is an ammonium sponge, outcompeting nearly all other bacteria and archaea in its oxidation of ammonium in the environment," explained Stein. "Now that we know how efficient this microbe is, we can explore many practical applications to reduce the amount of ammonium that contributes to environmental problems in our atmosphere, water, and soil."

The applications range from wastewater treatment, with the development of more efficient biofilms, to drinking water and soil purification to climate change research.

"An efficient complete ammonia oxidizer, such as Nitrospira inopinata, may produce less nitrous oxide," explained Kits. "By encouraging our microbe to outgrow other, incomplete oxidizers, we may, in turn, reduce their contribution to the greenhouse gas effect. Further investigation is required."

The research, "Kinetic analysis of a complete nitrifier reveals competitiveness in oligotrophic habitats," is published in Nature.

###

Media Contact

Katie Willis
[email protected]
780-248-1215
@ualberta

http://www.ualberta.ca

https://www.ualberta.ca/science/science-news/2017/august/new-microbe-has-potential-to-rebalance-nitrogen-cycle

Related Journal Article

http://dx.doi.org/10.1038/nature23679

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.