• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Climate extremes: The energy required for adaptation calls for stronger mitigation efforts

Bioengineer by Bioengineer
August 25, 2022
in Science News
Reading Time: 4 mins read
0
Energy use variation for adaptation
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new study published today in Nature Communications by researchers from the Euro-Mediterranean Center on Climate Change, Ca’ Foscari University of Venice, the European Institute on Economics and the Environment and the London School of Hygiene & Tropical Medicine finds that adapting to climate change will require more energy than previously estimated, leading to higher energy investments and costs. Avoiding this additional energy burden is another important benefit of ambitious mitigation that so far has remained neglected in the academia, the public debate and the international negotiations.

Energy use variation for adaptation

Credit: www.energy-a.eu

A new study published today in Nature Communications by researchers from the Euro-Mediterranean Center on Climate Change, Ca’ Foscari University of Venice, the European Institute on Economics and the Environment and the London School of Hygiene & Tropical Medicine finds that adapting to climate change will require more energy than previously estimated, leading to higher energy investments and costs. Avoiding this additional energy burden is another important benefit of ambitious mitigation that so far has remained neglected in the academia, the public debate and the international negotiations.

This new study sheds light on a blind spot of the energy transition and of the implementation of climate policies: adaptation needs will reduce the effectiveness of climate mitigation policy, and it is therefore necessary to revise those policies accounting for the evident changes in climatic conditions. The researchers involved examined how responses to climate change will affect energy systems, and therefore the achievement of mitigation goals, including their economic costs. Estimating the size of future energy needs for adaptation to climate change has important implications for the transition towards sustainability and decarbonized economies.

Francesco Pietro Colelli, lead author of the study, points out that “adapting to climate change by means of adjustments in energy habits, as we did in the past, will increase the global demand for electricity by 7% by 2050 and by 18% in 2100. Since a lot of our energy still comes from coal, gas, and oil, there is a risk such an increase will lead to more physical capital being locked into fossil fuels, corresponding to around 30-35 new large gas-fired plants and 10-15 new large coal- and oil-fired plants each year between now and 2050.”

In Europe, the increase in electricity demand for cooling will be more than compensated by the decrease in fuels demand for heating, leading to a 6% reduction in the final energy demand by the end of the century. Still, between now and 2050, under current climate policies, an additional €235 billion of investments and operational expenses in power generation and transmission are needed to provide the additional electricity needed for cooling.

Enrica De Cian, co-author of the study, and leader of a European ERC project dedicated to the cooling crisis, ENERGYA, explains that “adaptation through air conditioning would also require more resources for grid investments and power generation. Overall electricity generation costs, including investments in capacity, grids, fuel, operation & maintenance costs,  will rise by 21% throughout the century. The additional supply-side costs will be passed on to consumers through increases in the price of electricity around 2%-6% due to the adaptation-energy feedback in different regions. Ambitious mitigation policies can cut by more than half the increase in the costs of the energy system induced by adaptation, depending on the stringency of the climate target. Because of the benefits in terms of reduced adaptation needs, the costs to decarbonize the power system in ambitious mitigation scenarios would be lower than previous estimates, and they would turn negative in well-below-2-degree scenarios, pointing at net gains in terms of power system costs.”

Colelli stresses lastly that “adaptation induces variations in the energy markets that ultimately result in a shift in global and regional greenhouse gas emissions of about 7% cumulatively from 2020 to 2100. As a consequence of the variation in emissions, ambitious mitigation pathways see an increase in the global carbon price between 5% and 30%.” This aspect can and should have important implications for the international negotiations on climate change.

Technical details

By integrating the “adaptation-energy feedback loop” into the World Induced Technical Change Hybrid model – WITCH, the study is one of the first to fully integrate the energy needs for adaptation endogenously into mitigation pathways, so that climate policy design is directly influenced by adaptation energy needs. The findings indicate that climate adaptation can lead to higher energy demand, power system costs and carbon prices, with mitigation’s benefits compensating decarbonization costs.

Link to the scientific article:

Colelli, F.P., Emmerling, J., Marangoni, G. et al. Increased energy use for adaptation significantly impacts mitigation pathways. Nat Commun 13, 4964 (2022). https://doi.org/10.1038/s41467-022-32471-1



Journal

Nature Communications

DOI

10.1038/s41467-022-32471-1

Method of Research

Computational simulation/modeling

Article Title

Increased energy use for adaptation significantly impacts mitigation pathways

Article Publication Date

25-Aug-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Efficient Antenna Tuning via Advanced Simulations and Predictors

November 2, 2025

Biologic Treatments: Adherence Insights for Palmoplantar Pustulosis

November 2, 2025

Nurses’ Emotional Challenges in Surgical Patient Care

November 2, 2025

Surviving Post-NICU: Caring for Complex Infants

November 2, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1295 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Efficient Antenna Tuning via Advanced Simulations and Predictors

Biologic Treatments: Adherence Insights for Palmoplantar Pustulosis

Nurses’ Emotional Challenges in Surgical Patient Care

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.